Antimicrobial Property of $(+)-Lyoniresinol-3{\alpha}-O-\beta-D-Glucopyranoside$ Isolated From the Root Bark of Lycium chinense Miller Against Human Pathogenic Microorganisms

  • Lee Dong Gun (Department of Microbiology, Kyungpook National University) ;
  • Jung Hyun Jun (Department of Microbiology, Kyungpook National University) ;
  • Woo Eun-Rhan (College of Pharmacy, Chosun University)
  • Published : 2005.09.01

Abstract

[ $(+)-Lyoniresinol-3{\alpha}-O-\beta-D-glucopyranoside$ ] (1) was isolated from an ethyl acetate extract of the root bark from Lycium chinense Miller, and its structure was determined using 1D and 2D NMR spectroscopy including DEPT, HMQC, and HMBC. $(+)-Lyoniresinol-3{\alpha}-O-\beta-D-glucopyranoside$ exhibited potent antimicrobial activity against antibiotic-resistant bacterial strains, methicillin-resistant Staphylococcus aureus (MRSA) isolated from patients, and human pathogenic fungi without having any hemolytic effect on human erythrocytes. In particular, compound 1 induced the accumulation of intracellular trehalose on C. albicans as stress response to the drug, and disrupted the dimorphic transition that forms pseudo-hyphae caused by the pathogenesis. This indicates that $(+)-Lyoniresinol-3{\alpha}-O-\beta-D-glucopyranoside$ has excellent potential as a lead compound for the development of antibiotic agents.

Keywords

References

  1. Achenbach, H., Lowel, M., Waibel, R., Gupta, M., and Solis, P., New lignan glucosides from Stemmadenia minima. Planta Med., 58, 270-272 (1992) https://doi.org/10.1055/s-2006-961451
  2. Alvarez-Peral, F. J. and Arguelles, J.-C., Changes in external trehalase activity during human serum-induced dimorphic transition in Candida albicans. Res. Microbiol., 151,837-843 (2000) https://doi.org/10.1016/S0923-2508(00)01150-5
  3. Benaroudj, N., Lee, D. H., and Goldberg, A. L., Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen redicals. J. Biol. Chem., 276, 24261-24267 (2001) https://doi.org/10.1074/jbc.M101487200
  4. Blondle, S. E. and Houghten, R. A., Design of model amphipathic peptides having potent antimicrobial activities. Biochemistry, 31, 12688-12694 (1992) https://doi.org/10.1021/bi00165a020
  5. Funayama, S., Yoshida, K., Konno, H., and Hikkino, H., Structure of Kukoamine A, a hypotensive principle of Lycium chinense root bark. Tetrahedron Lett., 21, 1355-1356 (1980) https://doi.org/10.1016/S0040-4039(00)74574-6
  6. Funayama, S., Zhang, G.-R., Nozoe, S., and Kukoamine, B., A spermine alkaloid from Lycium chinense. Phytochemistry, 38, 1529-1531 (1995) https://doi.org/10.1016/0031-9422(94)00826-F
  7. Han, S.-H., Lee, H.-H., Lee, I.-S., Moon, Y-H., and Woo, E.-R., A new phenolic amide from Lycium chinense Miller. Arch. Pharm. Res., 25, 433-437 (2002) https://doi.org/10.1007/BF02976596
  8. Kim, S. Y., Choi, Y.-H., Huh, H., Kim, J., Kim, Y. C., and Lee, H. S., New antihepatotoxic cerebroside from Lycium chinense Fruits. J. Nat. Prod., 60, 274-276 (1997) https://doi.org/10.1021/np960670b
  9. Lehrer, R., Lichtenstein, A. K., and Ganz, T., Defensins: Antimicrobial and cytotoxic peptides of mammalian cells. Annu. Rev. lmmunol., 11, 105-128 (1993) https://doi.org/10.1146/annurev.iy.11.040193.000541
  10. Lee, D. G., Park, Y., Kim, M.-R., Jung, H. J., Seu, Y. B., Hahm, K.-S., and Woo, E.-R., Antifungal effects of phenolic amides isolated from the root bark of Lycium chinense. Biotechnol. Lett., 26, 1125-1130 (2004) https://doi.org/10.1023/B:BILE.0000035483.85790.f7
  11. Mclain, N., Ascaniom, R., Baker, C., Strohaver, R. A., and Dolan, J. W., Undeclenic acid inhibits morphogenesis of Candida albicans. Antimicrob. Agents Chemothr., 44, 2873-2875 (2000) https://doi.org/10.1128/AAC.44.10.2873-2875.2000
  12. Morota, T., Sasaki, H., Chin, M., Sato, T., Katayama, N., Fukuyama, K., and Mitsuhashi, H., Studies on the crude drug containing the angiotensin I converting enzyme inhibitors (I) on the active principles of Lycium chinense Miller. Shoyakugaku Zasshi, 41, 169-173 (1987)
  13. Sannai, A., Fujimori, T., and Kato, K., Isolation of (-)-1,2-dehydro-$\alpha$-cyperone and solavetivone from Lycium chinense. Phytochemistry, 21, 2986-2987 (1982) https://doi.org/10.1016/0031-9422(80)85085-0
  14. Sengupta, S., Jana, M. L., Sengupta, D., and Naskar, A. K., A note on the estimation of microbial glycosidase activities by dinitrosalicylic acid reagent. Appl. Microbiol. Biotechnol., 53, 732-735 (2000) https://doi.org/10.1007/s002530000327
  15. Terauchi, M., Kanamori, H., Nobuso, M., Yahara, S., and Nohara, T., Detection and determination of antioxidative components in Lycium chinense. Nat. Med., 51, 387-391 (1997)
  16. Terauchi, M., Kanamori, H., Nobuso, M., Yahara, S., and Yamasaki, K., New acyclic diterpene glycoside, Lyciumoside IV-IX from Lycium chinense Mill. Nat. Med., 52, 167-171 (1998)
  17. Yahara, S., Shigeyama, C., Ura, T., Wakamatsu, K., Yasuhara, T., and Nohara, T., Cyclic peptides, acyclic diterpene glycoside and other compounds from Lycium chinense Mill. Chem. Pharm. Bull., 41, 703-709 (1993) https://doi.org/10.1248/cpb.41.703