BICYCLIC BSEC OF BLOCK SIZE 3

Chung Je Cho

ABSTRACT. A k-sized balanced sampling plan excluding contiguous units of order v and index λ , denoted by $BSEC(v,k,\lambda)$, is said to be bicyclic if it admits an automorphism consisting of two disjoint cycles of length $\frac{v}{2}$. In this paper, we obtain a necessary and sufficient condition for the existence of bicyclic BSEC(v,3,2)s.

1. Introduction

A pair $\{x_i, x_j\}$ of a cyclically ordered set $X = \{x_0, x_1, \ldots, x_{v-1}\}$ is said to be contiguous if j = i + 1 for $0 \le i \le v - 2$ or $\{i, j\} = \{0, v - 1\}$. Otherwise, it is non-contiguous. A k-sized balanced sampling plan excluding contiguous points of order v and index λ , denoted by $BSEC(v, k, \lambda)$, is a pair (X, \mathfrak{B}) where X is a v-set of points (units) in cyclic ordering and \mathfrak{B} is a collection of k-subsets of X, called blocks, such that any contiguous pair of X does not appear in any block while any non-contiguous pair of distinct points in X appears in exactly λ blocks. Balanced sampling plans excluding contiguous units can be used for survey sampling when the units are arranged in a one-dimensional ordering and the contiguous units in this ordering provide similar information, such as estimates of population characteristics. When k = 3, the existence of a $BSEC(v, k, \lambda)$ is settled by Colbourn and Ling[1].

THEOREM 1.1. [1] There exists a $BSEC(v,3,\lambda)$ if and only if $v \in \{0,3\}$ or $\lambda(v-3) \equiv 0 \pmod{6}, v \geq 9$.

A $BSEC(v, k, \lambda)$ is said to be *cyclic* if it admits an automorphism consisting of a single cycle of length v. In 2002, Wei[3] establishes the existence of cyclic $BSEC(v, 3, \lambda)$ with $\lambda = 1, 2$.

Received January 20, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 05B05, 05B07, 05B10.

Key words and phrases: balanced sampling plans excluding contiguous units, automorphism.

THEOREM 1.2. [3] There exists a cyclic BSEC(v,3,1) if and only if $v \equiv 3 \pmod{6}$; there exists a cyclic BSEC(v,3,2) if and only if $v \equiv 0,3$ or $9 \pmod{12}$.

There does not exist a cyclic BSEC(v,3,2) for $v\equiv 6\pmod{12}$. However, Colbourn and Ling[1] defined bicyclic BSEC(v,3,2) and gave some small examples. Whether there exists a bicyclic BSEC(v,3,2) for all $v\equiv 6\pmod{12}$ still remains as an interesting problem. A $BSEC(v,k,\lambda)$ is said to be bicyclic if it admits an automorphism consisting of two disjoint cycles of length $\frac{v}{2}$. In this paper, we obtain a necessary and sufficient condition for the existence of bicyclic BSEC(v,3,2)s.

2. Existence of bicyclic BSEC(v, 3, 2)s

A necessary condition for the existence of bicyclic BSEC(v,3,2)s is easily obtained.

LEMMA 2.1. If there exists a bicyclic BSEC(v,3,2), then $v \equiv 0$ or 6 (mod 12) and $v \neq 6$.

If $v \equiv 0 \pmod{12}$, the existence of a cyclic BSEC(v, 3, 2) gives rise to the existence of a bicyclic BSEC(v, 3, 2).

LEMMA 2.2. If $v \equiv 0 \pmod{12}$, then there exists a bicyclic BSEC(v, 3, 2).

Let $\mathbb{Z}_v = \{0, 1, \dots, v-1\}$ denote the cyclic additive group of order v. If $(x,i) \in \mathbb{Z}_v \times \{1,2\}$ is an element, we write briefly x_i for it. We consider $\mathbb{Z}_v \times \{1,2\}$ as a cyclically ordered set

$$(0_1, 0_2, 1_1, 1_2, \ldots, (v-1)_1, (v-1)_2).$$

In this cyclic ordering, note that a pair $\{a,b\}$ of distinct points is contiguous if and only if $(a,b)=(i_1,i_2)$ or $(i_2,(i+1)_1)$ where $i\in\mathbb{Z}_v$.

It remains to construct a bicyclic BSEC(v,3,2) for $v \equiv 6 \pmod{12}$ and $v \neq 6$. We will construct our bicyclic BSEC(v,3,2) with point set $V = \mathbb{Z}_{\frac{v}{2}} \times \{1,2\}$ and the corresponding bicyclic automorphism is

$$\alpha = \left(0_1, 1_1, \dots, \left(\frac{v}{2} - 1\right)_1\right) \left(0_2, 1_2, \dots, \left(\frac{v}{2} - 1\right)_2\right).$$

Let $<\alpha>$ be the group generated by α . If $v\equiv 6\pmod{12}$ and if there exists a collection of 3-subsets

$$B_1, B_2, \ldots, B_{\frac{2(v-3)}{3}}$$

of $V = \mathbb{Z}_{\frac{v}{2}} \times \{1, 2\}$, which produce under the bicyclic automorphism α each of the pairs

$$\{0_1, i_1\}, \quad i = 1, 2, \dots, \frac{v}{2} - 1,$$

$$\{0_1, i_2\}, \quad i = 1, 2, \dots, \frac{v}{2} - 2,$$

$$\{0_2, i_1\}, \quad i = 2, 3, \dots, \frac{v}{2} - 1,$$

$$\{0_2, i_2\}, \quad i = 1, 2, \dots, \frac{v}{2} - 1$$

exactly twice, then the orbits $\mathcal{O}(B_i) = \{\beta(B_i) | \beta \in \langle \alpha \rangle \}$, $i = 1, 2, ..., \frac{2(v-3)}{3}$, form the blocks for a bicyclic BSEC(v, 3, 2). Such a collection of 3-subsets is called a collection of base blocks for the bicyclic BSEC(v, 3, 2). If v = 12t + 6, we will construct 8t + 2 base blocks consisting of

- (i) 2t of the form $\{0_1, a_1, b_1\}$,
- (ii) 2 of the form $\{c_1, d_1, 0_2\},\$
- (iii) 6t 1 of the form $\{0_2, r_2, s_2\}$,
- (iv) one of the form $\{0_2, x_2, y_2\}$,

which give rise to a bicyclic BSEC(12t+6,3,2). 2t blocks with type (i) will be taken each twice of t base blocks for a cyclic STS(6t+3) (a cyclic Steiner triple system STS(v) exists for all $v \equiv 1$ or $3 \pmod{6}$, $v \neq 9$, [2]) based on $\mathbb{Z}_{6t+3} \times \{1\}$, except the base block $\{0_1, (2t+1)_1, (4t+2)_1\}$, 2 blocks with type (ii) are $\{(2t+1)_1, (4t+2)_1, 0_2\}$ and $\{(6t+2)_1, (2t)_1, 0_2\}$, and one block with (iv) will be taken $\{0_2, 1_2, (3t+2)_2\}$. We need some observations for blocks with types (iii). If S is a set, 2S denotes the multiset with each object repeated twice.

Definition 2.3. A (6t+2)-system is a set of ordered pairs

$$\{(a_r, b_r)|r=1, 2, \dots, 3t\} \cup \{(c_r, d_r)|r=2, 3, \dots, 3t\} \cup \{(a, b), (c, d)\}$$

such that

$${a_r, b_r | r = 1, 2, \dots, 3t} \cup {c_r, d_r | r = 2, 3, \dots, 3t} \cup {a, b, c, d}$$

= 2{2, 3, \dots, 6t + 2}

and

$$b_r - a_r = r, \ r = 1, 2, \dots, 3t,$$

 $d_r - c_r = r, \ r = 2, 3, \dots, 3t,$

$$(a,b) = (2t+1,4t+2),$$

 $(c,d) = (2t,6t+2).$

LEMMA 2.4. If there exists a (6t + 2)-system and $t \ge 2$, then there exists a bicyclic BSEC(12t + 6, 3, 2).

PROOF. Let

$$\{(a_r,b_r)|r=1,2,\ldots,3t\} \cup \{(c_r,d_r)|r=2,3,\ldots,3t\} \cup \{(a,b),(c,d)\}$$
 be a $(6t+2)$ -system. Then the following triples:

base blocks for a cyclic STS(6t+3) based on $\mathbb{Z}_{6t+3} \times \{1\}$ each twice, except its base block $\{0_1, (2t+1)_1, (4t+2)_1\}$, and

$$\{(2t+1)_1, (4t+2)_1, 0_2\}, \{(6t+2)_1, (2t)_1, 0_2\},\$$

$$\{0_2, r_2, (b_r)_1\}, r = 1, 2, \dots, 3t,$$

$$\{0_2, r_2, (d_r)_1\}, r = 2, 3, \dots, 3t,$$

$$\{0_2, 1_2, (3t+2)_2\}$$

form base blocks for a bicyclic BSEC(12t+6,3,2).

LEMMA 2.5. [1] There exists a bicyclic BSEC(v, 3, 2) for v = 18, 30, 42.

It remains to construct (6t + 2)-system for all $t \ge 2$.

LEMMA 2.6. If $t \equiv 2 \pmod{4}$ and $t \geq 2$, then there exists a (6t+2)-system.

PROOF. If t = 2, then

$$(4, 14), (5, 10), (3, 6), (2, 7), (11, 12), (3, 6), (2, 7), (10, 12), (9, 13), (8, 14), (9, 11), (4, 8), (5, 11)$$

form a 14-system.

If $t \equiv 2 \pmod{4}$ and $t \geq 6$, then the following ordered pairs form a (6t+2)-system:

$$(a,b) = (2t, 6t + 2), (c,d) = (2t + 1, 4t + 1),$$

$$(1+r, 3t + 3 - r), r = 1, 2, \dots, t + 1,$$

$$(3t + 3 + r, 6t + 3 - r), r = 1, 2, \dots, \frac{3t - 2}{2},$$

$$(t + 2 + r, 2t - r), r = 1, 2, \dots, \frac{t - 4}{2},$$

$$(1+r, 3t + 2 - r), r = 1, 2, \dots, \frac{3t}{2},$$

$$(3t+1+r,6t+2-r), r = 1,2,..., \frac{3t-2}{4},$$

 $\left(\frac{3t+2}{2}, \frac{9t+2}{2}\right), \left(3t+3, \frac{9t+6}{2}\right),$

and we divide into two cases:

Case 1. $t \equiv 6 \pmod{8}$. If t = 6, then

If $t \geq 14$, then

$$(4t+2-r,5t+1-r), r = 1,2,...,\frac{t-2}{4},$$

$$(4t+3+2r,5t+2-2r), r = 1,2,...,\frac{t-6}{4},$$

$$(4t+2+2r,5t-1-2r), r = 1,2,...,\frac{t-6}{8},$$

$$\left(\frac{9t+2}{2}-2r,\frac{9t}{2}+2r\right), r = 1,2,...,\frac{t-14}{8}, (t > 14),$$

$$(4t+3,5t+1), \left(\frac{17t+10}{4},\frac{21t+6}{4}\right),$$

$$\left(\frac{15t+6}{4},\frac{19t-6}{4}\right), \left(\frac{9t+6}{2},5t-1\right).$$

Case 2. $t \equiv 2 \pmod{8}$.

$$\left(\frac{15t+6}{4} + r, \frac{21t+6}{4} - r \right), \ r = 1, 2, \dots, \frac{t-2}{4},$$

$$(4t+2+r, 5t+1-r), \ r = 1, 2, \dots, \frac{t-2}{4},$$

$$\left(\frac{17t+10}{4} + 2r, \frac{19t+10}{4} - 2r \right), \ r = 1, 2, \dots, \frac{t-10}{8}, (t > 10),$$

$$\left(\frac{17t+6}{4} + 2r, \frac{19t-2}{4} - 2r \right), \ r = 1, 2, \dots, \frac{t-10}{8}, (t > 10),$$

$$\left(\frac{17t+10}{4}, \frac{21t+6}{4} \right), \ \left(\frac{9t+6}{2}, 5t+1 \right), \ \left(\frac{15t+6}{4}, \frac{19t-2}{4} \right).$$

LEMMA 2.7. If $t \equiv 0 \pmod{4}$ and $t \geq 4$, then there exists a (6t+2)-system

PROOF. If $t \equiv 0 \pmod{4}$ and $t \geq 4$, then the following ordered pairs form a (6t + 2)-system:

$$(a,b) = (2t,6t+2), (c,d) = (2t+1,4t+2),$$

$$(1+r,3t+3-r), r = 1,2,\ldots,t+1,$$

$$(t+2+r,2t-r), r = 1,2,\ldots,\frac{t-4}{2}, (t>4),$$

$$(3t+2+r,6t+3-r), r = 1,2,\ldots,\frac{3t}{2},$$

$$(1+r,3t+3-r), r = 1,2,\ldots,\frac{3t}{2},$$

$$(3t+2+r,6t+1-r), r = 1,2,\ldots,\frac{t-4}{2}, (t>4),$$

$$(4t+2-r,5t+3+r), r = 1,2,\ldots,\frac{t-2}{2},$$

$$\left(\frac{3t+2}{2},\frac{7t+4}{2}\right), \left(\frac{3t+4}{2},\frac{9t+2}{2}\right),$$

$$(4t+3,5t+1), (t>4),$$

and we divide into two cases:

Case 1. $t \equiv 0 \pmod{8}$.

$$(4t+5+r,5t+4-r), r = 1, 2, 5, 6, 9, 10, \dots, \frac{t-4}{2},$$

 $(4t+3+r,5t-2-r), r = 1, 2, 5, 6, 9, 10, \dots, \frac{t-12}{2}, (t > 8),$

Case 2. $t \equiv 4 \pmod{8}$.

$$\left(\frac{7t+2}{2}, \frac{9t+4}{2}\right), (5t+2, 6t+1),$$

and we distinguish into three subcases:

Subcase 1. $t \equiv 4 \pmod{24}$. If t = 4, an ordered pair (21, 23) is added. If t > 4,

$$(4t+3+3r,5t+6-3r), r = 1,2,\ldots,\frac{t-4}{8},$$

 $(4t+3+r,5t-r), r = 1,2,4,5,7,8,\ldots,\frac{t-18}{2},$

$$\left(\frac{9t+6}{2}, \frac{9t+12}{2}\right), \left(\frac{9t-2}{2}, \frac{9t+8}{2}\right), \left(\frac{9t}{2}, \frac{9t+14}{2}\right), \left(\frac{9t-8}{2}, \frac{9t+10}{2}\right), \left(\frac{9t-6}{2}, \frac{9t+16}{2}\right).$$

Subcase 2. $t \equiv 12 \pmod{24}$.

$$(4t+3+3r,5t+6-3r), r = 1,2,\ldots,\frac{t}{6},$$

 $(4t+3+r,5t-r), r = 1,2,4,5,7,8,\ldots,\frac{t-8}{2}.$

Subcase 3. $t \equiv 20 \pmod{24}$.

$$(4t+3+3r,5t+6-3r), r = 1,2,..., \frac{t-4}{8},$$

$$(4t+3+r,5t-r), r = 1,2,4,5,7,8,..., \frac{t-16}{2},$$

$$\left(\frac{9t+6}{2}, \frac{9t+12}{2}\right), \left(\frac{9t}{2}, \frac{9t+10}{2}\right), \left(\frac{9t-6}{2}, \frac{9t+8}{2}\right),$$

$$\left(\frac{9t-4}{2}, \frac{9t+14}{2}\right), \left(\frac{9t-2}{2}, \frac{9t+20}{2}\right).$$

LEMMA 2.8. If $t \equiv 1 \pmod{2}$ and $t \geq 3$, then there exists a (6t+2)-system

PROOF. If t = 3, then the following ordered pairs form a 20-system:

$$(a,b) = (6,20), (c,d) = (7,14),$$

 $(10+r,21-r), r = 1,2,3,4,5,$
 $(1+r,11-r), r = 1,2,3,$
 $(2,4), (3,5), (6,9), (13,17), (5,10),$
 $(12,18), (8,15), (11,19), (7,16).$

If $t \equiv 1 \pmod{2}$ and $t \geq 5$, then the following ordered pairs form a (6t + 2)-system:

$$(a,b) = (2t, 6t + 2), (c,d) = (2t + 1, 4t + 2),$$

$$(3t + 1 + r, 6t + 3 - r), r = 1, 2, \dots, \frac{3t + 1}{2}$$

$$(1 + r, 3t + 2 - r), r = 1, 2, \dots, t,$$

$$(t + r, 2t - r), r = 1, 2, \dots, \frac{t - 3}{2},$$

$$(1+r,3t+2-r), r = 1,2,\ldots, \frac{3t-1}{2},$$

$$(3t+1+r,6t+1-r), r = 1,2,\ldots, \frac{t-3}{2},$$

$$\left(\frac{7t+3}{2}+r, \frac{11t+5}{2}-r\right), r = 1,2,\ldots, \frac{t-3}{2},$$

$$(4t+3+r,5t+1-r), r = 1,2,\ldots, \frac{t-5}{2}, (t>5),$$

$$\left(\frac{3t+1}{2}, \frac{7t+3}{2}\right), \left(\frac{7t+1}{2}, \frac{9t+5}{2}\right), \left(\frac{3t+3}{2}, \frac{9t+3}{2}\right),$$

$$(4t+1,5t+1), (4t+3,5t+2), (5t+3,6t+1).$$

Theorem 2.9. If $t \geq 2$ is an integer, then there exists a (6t + 2)-system.

Now, we conclude the following theorem.

THEOREM 2.10. There exists a bicyclic BSEC(v, 3, 2) if and only if $v \equiv 0$ or 6 (mod 12), $v \neq 6$.

References

- [1] C. J. Colbourn and A. C. H. Ling, A class of partial triple systems with applications in survey sampling, Comm. Statist. Theory Methods 27 (1998), 1009–1018.
- [2] R. Peltesohn, Eine Lösung der beiden Heffterschen Differenzenprobleme, Compos. Math. 6 (1939), 251–257.
- [3] R. Wei, Cyclic BSEC of block size 3, Discrete Math. 250 (2002), 291–298.

Department of Mathematics College of Sciences Sookmyung Women's University Seoul 140-742, Korea E-mail: cjcho@sookmyung.ac.kr