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ON KRAMER-MESNER MATRIX
PARTITIONING CONJECTURE

Yoom1 RHO

ABSTRACT. In 1977, Ganter and Teirlinck proved that any 2¢ x 2t
matrix with 2¢ nonzero elements can be partitioned into four sub-
matrices of order ¢t of which at most two contain nonzero elements.
In 1978, Kramer and Mesner conjectured that any mt X nt matrix
with kt nonzero elements can be partitioned into mn submatrices
of order t of which at most k contain nonzero elements. In 1995,
Brualdi et al. showed that this conjecture is true if m =2, k < 3 or
k > mn — 2. They also found a counterexample of this conjecture
when m =4, n =4, k=6 and t = 2. When ¢ = 2, we show that
this conjecture is true if k < 5.

1. Introduction

The following theorem is proved by Ganter and Teirlinck[3].

THEOREM 1. Every 2t x 2t matrix with 2t nonzero elements can be
partitioned into four submatrices of order t of which at most two contain
nonzero elements.

In 1978, Kramer and Mesner conjectured the following.

CONJECTURE 2. Let m, n, t and k be positive integers. Then every
mt X nt matrix with kt nonzero elements can be partitioned into mn
submatrices of order t of which at most k contain nonzero elements.

Brualdi et al.[1] denoted the assertion of this conjecture by KM (m, n,
k,t). They mentioned its relation with the Zarankiewicz problem which
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is stated as follows ([5]): Determine Z(a,b;c,d), the smallest number
M such that each a x b matrix with M zero elements contains a ¢ x d
zero matrix. For that they used f(m,n,k,t) which they defined as the
largest N such that each mt x nt matrix with N nonzero elements can be
partitioned into mn submatrices of order ¢ of which at most & contain
nonzero elements. Thus the assertion KM (m,n, k,t) is equivalent to
f(m,n, k,t) > kt. Also f(m,n,mn—rs,t) > (mt)(nt) — Z(mt, nt;rt, st)
with equality if 7 = s = 1. They proved that KM (m,n,k,t) is true if
m =2,k <3 ork>mn— 2. They also showed that KM (4,4,6,2) is
false by finding a counter example which is shown in Fig 1. In this paper
we extend the results in [1] by showing that KM (m,n, k,2) is true if
k <5.
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2. Preliminaries and basic results

We introduce some notations and definitions. Let G be a graph.
Then |G| denotes the order of G. For a vertex u of G, a neighbor of u is
a vertex which is connected to u. N(u) denotes the set of all neighbors
of u. For a set U of vertices, N(U) denotes the union of N(u) for all
elements u of U. G is called bipartite if its vertex set can be partitioned
into two partite sets where no edge connects two vertices of one partite
set. A bipartite graph G is called a complete bipartite graph if any two
vertices in different partite sets are adjacent. A complete bipartite graph
with two partite sets of m, n vertices, respectively is denoted by K, .
K 3 is called a claw. A path with n vertices is denoted by P, and a
cycle with n vertices is denoted by C,. We call G a Ps — claw if it is
a claw where each edge is replaced by P;. For a P3-claw, we call the
vertex of degree 3 the center. Throughout this paper we view a matrix
A = [aj;] as an adjacency matrix of a bipartite graph G = G(U,V; E)
where U is the set of vertices corresponding to the rows of A, V is the
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set of vertices corresponding to the columns of A and E is the set of
edges determined by the nonzero elements in A. We say that A has a
matriz — crossing if both a;, j, and ag,j, are nonzero for some iy, iz, j1, j2
such that i1 < i and j; < jo. We also say that A is decomposed into
two matrices A; and A, if there exist permutation matrices P and @
such that PAQ = A; & As, the direct sum of A; and Aj.

LeEMMA 3. [1] Let ¢, m, n and t be positive integers with ¢ < m. As-
sume that q1,. .., qn iS a nonincreasing sequence of nonnegative integers
with > ;% ¢ < mn+c. Then 7" . ¢ <n(m—c).

Proof. This is a restatement of Lemma 2.1. of Brualdi et al.[/1}. O

LEMMA 4. If an m x n matrix A has no matrix-crossing, then A
contains at most m + n — 1 nonzero elements.

Proof. We prove by induction on (m,n). If the element in k-th row
and [-th column of A, ay; = 0 for all (k,1) # (1,1), (m,n), then the
lemma is true clearly. Suppose ay; # 0 for some (k,1) # (1,1), (m,n).
Consider a k x { matrix which we obtain by omitting the last m — k rows
and the last n—I columns of A and an (m—k+1)x (n—I+1) matrix which
we obtain by omitting the first £ — 1 rows and the first [ — 1 columns of
A. Note that these two matrices contain all the nonzero elements of A.
By applying the induction hypothesis on these two matrices, the lemma
follows. O

"LEMMA 5. If an mt x nt matrix A has no matrix-crossing, then A can
be partitioned into mn submatrices of order t of which at most m+mn—1
contain nonzero elements.

Proof. For 1 <i < m and 1 < j < n, let A;; be the submatrix of
A of order t we obtain from A by omitting all the rows and columns
except (i — 1)t + 1,...,4t-th rows and (j — 1)t + 1,..., jt-th columns.
For each 1 < 41,43 < m, 1 < j1,42 £ n such that i; < iz and j; < ja2,
not both submatrices A4;,;, and A;,; contain nonzero elements as A has

no matrix-crossings. Thus the lemma follows from the previous Lemma
4. |

LEMMA 6. A tree contains a P3-claw if and only if all of its adjacency
matrix has a matrix-crossing.

Proof. If a tree contains a Ps-claw, then all of its adjacency matrix
has a matrix-crossing clearly. Suppose a tree contains no P3-claw. Then
each vertex of it has at most two neighbors of degree more than 1. Thus
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it is a path with some vertices of degree 1 added, which obviously has
an adjacency matrix without matrix-crossing.

THEOREM 7. [4] If a1,...,a9-1 is a sequence of elements in the
elementary Abelian group Z; x Z;, then some subsequence has sum (0, 0).

The following lemma is in the proof of Theorem 3.2. of Brualdi et
al.[1]. It uses the above theorem which was conjectured by Erdos[2] and
proved by Olson[4](see [1]).

LEMMA 8. [1] Let A be an mt x nt matrix. If there are at least 2t
connected components of the bipartite graph G(U,V, E) corresponding
to the matrix A, then A is decomposed into two matrices A; and As
where A is an et x ft matrix and Ag is an (m — e)t x (n — f)t matrix
for some (e, f) # (0,0), (m,n).

The following lemma, which uses the pigeon-hole principle, is in the
proof of Lemma 3.3. of Brualdi et al.[1].

LEMMA 9. [1] Let A be a matrix with kt nonzero elements. If the
bipartite graph G(U,V, E) corresponding to A contains at least t + 1
nontrivial components, then A is decomposed into two matrices A; and
Ay where A; contains et nonzero elements and As contains (k — e)t
nonzero elements for some 0 < e < k.

LEMMA 10. For all k > 3, KM (3,k — 1,k,2) is true if KM (3,k —
2,k,2) is true.

Proof. Let A be a 6 x 2(k — 1) matrix with 2k nonzero elements.
By Lemma 8, we may assume that A is decomposed into A; and A,
where A is a 2e x 2f matrix and A is a 2(3 —e) x 2(k — f — 1) matrix
for a pair of integers (e, f) # (0,0),(3,k — 1). After exchanging A;
and Az if needed, we may assume that 2 < e < 3. If e = 3, then the
lemma, is proved as KM (3,k — 2,k,2) is true. Let e = 2. If f =0 or
f = k — 1, then the lemma is true as KM(2,k — 1,k,2) is true. Let
0 < f<k-—1. If A; contains at most 2f + 2 nonzero elements, then
the lemma is proved by applying KM (2, f, f + 1,2) to A;. Also if A;
contains at least 2f + 4 nonzero elements, then Ay contains at least
two zero columns and hence the lemma is proved as KM(3,k — 2,k,2)
is true. Assume that A; and Ay contain 2f + 3 nonzero elements and
2(k — f — 1) — 1 nonzero elements, respectively where all the nonzero
elements of Ay are in different columns. Note that Az is decomposed
into two matrices. For each 1 < j < 2f, let g; be the number of nonzero
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elements in column j of A;. After rearranging columns we may assume
that ¢ > ... > ¢ay. By Lemma 3, g3+ ...+ qop < 2(f - 1)+ 1. If
@3+ ...+ @u-1—p) < 2(f — 1), then the matrix we obtain from A,
by omitting its first two columns has a partition into submatrices of
order 2 of which at most f — 1 contain nonzero elements and hence the
lemma is proved. Assume that g3 + ...+ gof = 2(f — 1) + 1. Then
g1 =¢q=¢q3 =2and ¢ = 1for all i > 4. Let G; = G1(U1,V1; E1)
be the bipartite graph corresponding to A; where U; = {uj,u2, us}.
Let v1,v9,v3 € V1 be the the vertices corresponding to the first three
columns of A;. Firstly assume that G contains a cycle. Then G is
disconnected and hence A; is decomposed into two matrices. Note that
each of A; and As has a direct summand with odd number of nonzero
elements. Applying K M (2, m,n,2) for some appropriate m and n to the
direct sum of those summands, the lemma is proved. Secondly assume
that G doesn’t contain a cycle. Then G is a tree. If A; has no matrix-
crossing, then the lemma is true by Lemma 5. Assume that A; has a
matrix-crossing. Then (G contains a Ps-claw by Lemma 6. Let u; € Uy
be the center of a P3-claw. Then u; is connected to vi, vy and wvs.
As A; contains odd number of nonzero elements we may assume that
d(uy) +d(uz) =1 (mod 2) and hence A; is partitioned as shown in Fig.
2. Thus the lemma follows.
11(11...1
1 1...1
1 1...1

1 ' 1...1

FIGURE 2

3. A partial solution on Kramer-Mesner matrix partitioning
conjecture for KM (m,n,k,2) for k <5

LemMaA 11. KM (3,3,4,2) is true.

Proof. Considering that KM (3,2,4,2) is true, the statement of the
lemma is true by Lemma 10.

LEmMMA 12. KM (3,3,5,2) is true.

Proof. Let A be a 6 x 6 matrix with 10 nonzero elements. Let
G = G(U,V;E) be the bipartite graph corresponding to A and s be
the number of connected components of G. Then by Lemma 8, s > 2.
Firstly assume that s > 4. Then by Lemma 8 again, A is decomposed
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into two matrices A; and As where A; is an e X b matrix for some
(a,b) = (0,0) (mod 2) and (a,b) # (0,0), (6,6). We may assume that
a > 3. If a = 6, then the lemma is proved as KM (3,2,5,2) is true. If
a = 4, then the lemma is true considering sizes of A; and A,. Secondly
assume that s = 3 and all the components of G are nontrivial. Then
by Lemma 9, A is decomposed into two matrices A; and Ay where A;
contains exactly 2e nonzero elements for some 0 < e < 5. By applying
KM(2,3,e,2) and KM(2,3,5 — e,2), A1 and Ay have partitions into
submatrices of order 2 of which at most e and 5 — e contain nonzero
elements, respectively and hence the lemma is proved. Finally assume
that s < 3 and at most two components of G are nontrivial. We consider
the cases where one or two components of G are nontrivial separately in
the following two cases.

Case 1: G has two nontrivial components.

Subcase la: G has no trivial component. Then A is decomposed into
A; and Ay where A; is an a x b matrix and Ay is a (6 — a) x (6 — b)
matrix for some 0 < a,b < 6. By the above argument when s > 4 or
G has three nontrivial components, it is enough to consider the case
where ¢ =1 (mod 2) and A; contains 2e — 1 nonzero elements for some
1 < e < 5. Also after exchanging A; and As if needed, we may assume
that e > 3. Note that the bipartite graphs corresponding to A1 and A,
are trees and hence a + b = 2e. Let e = 3. Then we may assume that
(a,b) = (3,3) or (5,1). In the latter case, the lemma is clearly true. Let
both A; and Az be 3 x 3 matrices. For each 1 < j < 3, let g; be the
number of nonzero elements in column j of A;. Rearrange columns so
that ¢3 > g2 > ¢3. Then g3 = 1 by Lemma 3. Similarly A2 has a column
with only one nonzero element. Thus A has a partition into submatrices
of order 2 where those two nonzero elements are in the same submatrix
as shown in Fig 3. Therefore the lemma is proved. Let e = 4. Then we
may assume that A; is a 3 x 5 matrix and Az is a 3 x 1 matrix. For
each 1 < j < 5, let g; be the number of nonzero elements in column j of
A;. Rearrange columns so that ¢; > ... > g5. Then g3 + ¢4 + g5 < 3 by
Lemma 3. The last three columns of A; and the first row of 4, together
contain 4 nonzero elements and hence their direct sum is partitioned into
submatrices of order 2 of which at most two contain nonzero elements.
Now the first two columns of A; are in two submatrices and the last two
rows of A are in one submatrix as shown in Fig 4. Therefore the lemma
follows. Let e = 5. Then A; is a 5 x 5 matrix and hence As isan 1 x 1
matrix. For each 1 < 4,5 < 5 let p; and g; be the number of nonzero
elements in row i and column j of Aj, respectively. After rearranging
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columns of A;, we may assume that ¢; > ... > ¢5. By Lemma 3, g3 +
ga+¢qs < 5. If g3+qq4+g5 < 3, then the direct sum of As and the matrix
we obtain from A; by omitting first two columns has a partition into
submatrices of order 2 of which at most two contain nonzero elements
and hence the lemma is proved. Thus we assume that g3 + g4 + g5 > 4
and hence (g1, 92, 93,94,95) = (3,2,2,1,1) or (2,2,2,2,1). Similarly we
assume that {p1,pe,p3,ps,05} = {3,2,2,1,1} or {2,2,2,2,1}. As the
bipartite graph corresponding to A; is a tree, it is enough to consider
the case where it contains a Ps-claw by Lemma 5 and Lemma 6. We
may assume that {p1, p2, p3, pa, p5} = {3,2,2,1,1} and some u € U is the
center of a P3-claw. Firstly assume that (g1, ¢2,¢3,94,95) = (3,2,2,1,1).
Then the neighbors of u have degrees 3, 2, 2 and hence we may assume
that A; contains a submatrix which is shown in Fig 5. Note that two
nonzero elements in the last two columns are in the right top part and
the right bottom part. If they are in one part, then the direct sum of A,
and the left middle part is a submatrix of order 2 and hence the lemma
follows as shown in Fig 5. Otherwise we may assume that they are in
the second row and the fourth row and hence A, is partitioned as shown
in Fig 5" after permuting the second row and the third row. Thus the
lemma follows. Secondly assume that (q1,¢2,93,494,95) = (2,2,2,2,1).
Then all the neighbor of © has degree 2 and hence we may assume that
Aj contains a submatrix which is shown in Fig 6. Thus A; is partitioned
as shown in Fig 6 or 6 and the lemma follows.
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Subcase 1b: G has one trivial component. Then we may assume that
after omitting a zero column, A is decomposed into A; and Az where
A1 is an a x b matrix and As is a (6 — a) x (5 — b) matrix for some
0<a<6and0<b<5b. Itis enough to consider the case where a = 1
(mod 2) and A; contains 2e — 1 nonzero elements for some 1 < e < 5.
We may assume that the bipartite graphs corresponding to A; and As
are an unicyclic graph and a tree, respectively and hence e > 3. When
e =3 or 4, A; and Ay are same with those in Subcase 1la except that
A1 has one less column and hence by the same argument as in Subcase
la, the lemma is proved. Assume that e = 5. Then A; is a 5 X 4 matrix
and As is an 1 x 1 matrix. For each 1 < ¢ < 5, let p; be the number
of nonzero elements in row ¢ of A; and for each 1 < j < 4, let g; be
the number of nonzero elements in column j of A;. After rearranging
columns we may assume that ¢; > ... > g4. By Lemma 3, g3+ ¢4 < 4.
If g3 + g4 < 3, then together with a zero column, the direct sum of A
and the matrix we obtain from A; by omitting the first two columns
is partitioned into submatrices of order 2 of which at most two contain
nonzero elements and hence the lemma is proved. Thus we may assume
that g3 + g4 = 4 and hence (q1,92,¢3,94) = (3,2,2,2). Similarly we
may assume that {p1, p2,p3, 04,05} = {3,2,2,1,1} or {2,2,2,2,1}. Let
G1 = G1(Uy, V1; E1) be the bipartite graph corresponding to A;. In Gy,
let C be the cycle and H be the graph induced by the vertices which are
not in C. Consider the following three subcases.

Subcase 1ba: C has size 4. Then the adjacency matrix of C is a subma-
trix of order 2. As at most two vertices of C have degree 3, there are
at most two edges connecting C and H. After subtracting them, A; is
decomposed into an adjacency matrix of C and an adjacency matrix of
H. Note that A2 and the adjacency matrix of H together have 4 rows.
Assume that there is one edge connecting C and H. Then the direct sum
of A, and the adjacency matrix of H contains 5 nonzero elements and
hence together with a zero column, it has a partition into submatrices
of order 2 of which at most three contain nonzero elements by applying
KM(2,2,3,2). Thus the lemma is proved. When there are two edges
connecting C and H, the lemma is proved similarly.

Subcase 1bb: C has size 6. Firstly if some vertex in V; which is in C has
degree 3, then A; is partitioned as shown in Fig 7 where only one of the
two right top parts contains a nonzero element, which proves the lemma.
Secondly if all the vertex in V; which is in C has degree 2, then the other
vertex in V7 has degree 3 and is connected to both of the vertices in Uy
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which are not in C. Thus A; is partitioned as shown in Fig 8 and the
lemma is proved.

Subcase 1bc: C has size 8. Then A; is partitioned as shown in Fig 9
and the lemma is proved.
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Case 2: G has one nontrivial component. Then we need to consider the
subcases where GG has one or two trivial components.

Subcase 2a: G has one trivial component. Then we may assume that
an adjacency matrix of the nontrivial component is a 5 x 6 matrix. By
a similar argument as in Subcase 1a with e = 5, the lemma is proved.

Subcase 2b: G has two trivial components. Then as KM (2,3,5,2) is
true, it is enough to consider the case where an adjacency matrix of the
nontrivial component is a 5 x 5 matrix. By a similar argument as in
Subcase 1b with e = 5, the lemma is proved.

LeEMMA 13. KM (3,4,5,2) is true.

Proof. The statement of lemma is true by Lemma 10 and Lemma 12.

The following two lemmas are extended from and proved similarly to
Lemma 3.3 in Brualdi et al.[1].
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LEMMA 14. [1] For k > 4, let A be a kt x kt matrix with kt nonzero
elements. If A has at most 3t — 1 zero rows and columns, then A can
be partitioned into submatrices of order t of which at most k contain
nonzero elements.

LEMMA 15. [1] For k > 5, let A be a kt x kt matrix with kt nonzero
elements. If A has at most 4t — 1 zero rows and columns, then A can
be partitioned into submatrices of order t of which at most k contain
nonzero elements.

THEOREM 16. KM (m,n,k,2) is true if k < 5.

Proof. As the assertion is true if k < 3 by Brualdi et al.[1], we only
need to prove that it is true for £ = 4 or k = 5. In each case, as in the
proof of Theorem 3.4. of Brualdi et al.[1}, KM (k, k, k,2) will suffice.
Assume that £ = 4. Let A be an 8 x 8 matrix with 8 nonzero elements.
If A has at most 5 zero rows and columns, then the theorem follows
by Lemma 14. Otherwise A has at least 6 zero rows and columns and
hence the theorem follows by Lemma 11 considering that KM(2,4,4,2)
is true. When k = 5, the theorem follows similarly by Lemma 13 and
Lemma 15 considering that KM (2,5,5,2) is true. O
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