DOI QR코드

DOI QR Code

STABILITY ANALYSIS OF BURSTING MODELS

  • Published : 2005.07.01

Abstract

In this paper, we present a general method for the stability analysis of some bursting models. Our method is geometric in the sense that we consider a flow-defined return map defined on a section and determine when the map is a contraction. We find that there are three different stability types in the codimension-1 planar bursters.

Keywords

References

  1. W. B. Adams and J. A. Benson, The generation and modulation of endogenous rhythmicity in the aplysia bursting pacemaker neurone R15, Progr. Biophys. Molec. Biol. 46 (1985), 1-49 https://doi.org/10.1016/0079-6107(85)90011-2
  2. S. M. Baer, T. Erneux, and J. Rinzel, The slow passage through a Hopf bifurcation: delay, memory effects, and resonances, SIAM J. Appl. Math. 49 (1989), 55-71 https://doi.org/10.1137/0149003
  3. R. Bertram, M. J. Butte, T. Kiemel, and A. Sherman, Topological and phenomenological classification of bursting oscillations, Bull. Math. Biol. 57 (1995), 413-439 https://doi.org/10.1007/BF02460633
  4. R. J. Butera, J. Rinzel, and J. C. Smith, Models of respiratory rhythm generation in the pre-Botzinger complex: I. Bursting pacemaker model, J. Neurophysiology 82 (1999), 382-397 https://doi.org/10.1152/jn.1999.82.1.382
  5. T. R. Chay and J. Keizer, Minimal model for membrane oscillations in the pan- creatic $\beta$-cell, Biophys. J. 42 (1983), 181-190 https://doi.org/10.1016/S0006-3495(83)84384-7
  6. C. A. Del Negro, C. F. Hsiao, S. H. Chandler, and A. Garfinkel, Evidence for a novel bursting mechanism in rodent trigeminal neurons, Biophys. J. 75 (1998), 174-182 https://doi.org/10.1016/S0006-3495(98)77504-6
  7. G. de Vries, Multiple bifurcations in a polynomial model of bursting oscillations, J. Nonlinear Sci. 8 (1998), 281-316 https://doi.org/10.1007/s003329900053
  8. G. B. Ermentrout and N. Kopell, Parabolic bursting in an excitable system coupled with a slow oscillation, SIAM J. Appl. Math. 46 (1986), 233-253 https://doi.org/10.1137/0146017
  9. N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations 31 (1979), 53-98 https://doi.org/10.1016/0022-0396(79)90152-9
  10. M. Golubitsky, K. Josic, and T. J. Kaper, An unfolding theory approach to bursting in fast-slow systems, In: Global Analysis of Dynamical Systems (H.W. Broer, B. Krauskopf and G. Vegter, eds.), Institute of Physics Publ. (2001), 277-308
  11. J. Guckenheimer and P. J. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983
  12. E. M. Izhikevich, Neural excitability, spiking and bursting, Inter. J. Bifur. Chaos 10 (2000), no. 6, 1171-1266 https://doi.org/10.1142/S0218127400000840
  13. Y. A. Kuznetsov, Elements of applied bifurcation theory, Springer-Verlag, New York, 1995
  14. E. Lee, Stability analysis of parabolic bursting, In preparation
  15. E. Lee and D. Terman, Uniqueness and stability of periodic bursting solutions, J. Differential Equations 158 (1999), 48-78 https://doi.org/10.1016/S0022-0396(99)80018-7
  16. C. Morris and H. Lecar, Voltage oscillations in the barnacle giant muscle fiber, Biophys. J. 35 (1981), 193-213 https://doi.org/10.1016/S0006-3495(81)84782-0
  17. A. Nejshtadt, Asymptotic investigation of the loss of stability by an equilibrium as a pair of eigenvalues slowly cross the imaginary axis, Uspekhi Mat. Nauk 40 (1985), 190-191
  18. R. E. Plant and M. Kim, On the mechanism underlying bursting in the Aplysia abdominal ganglion R-15 cell, Math. Biosci. 26 (1975), 357-375 https://doi.org/10.1016/0025-5564(75)90022-X
  19. J. Rinzel, A formal classification of bursting mechanisms in excitable systems, In: Proceedings of the International Congress of Mathematicians, vol. 1 & 2 (pp. 1578-1593). American Mathematical Society, Providence, RI, 1987
  20. J. Rinzel and Y. S. Lee, On different mechanism for membrane potential bursting, In: Lecture Notes in Biomathematics, vol. 66 (pp. 19-33). Springer-Verlag, New York, 1986
  21. J. Rubin and D. Terman, Geometric singular perturbation analysis of neuronal dynamics, In: Handbook of Dynamical Systems, vol.3: Towards Applications, Elsevier, 2002
  22. A. Sherman, J. Rinzel, and J. Keizer, Emergence of organized bursting in clusters of pancreatic ${\beta}$-cells by channel sharing, Biophys. J. 54 (1988), 411-425 https://doi.org/10.1016/S0006-3495(88)82975-8
  23. D. Terman, Chaotic spikes arising from a model for bursting in excitable mem- branes, SIAM J. Appl. Math. 51 (1991), 1418-1450 https://doi.org/10.1137/0151071
  24. D. Terman, The transition from bursting to continuous spiking in excitable membrane models, J. Nonlinear Sci. 2 (1992), 135-182 https://doi.org/10.1007/BF02429854
  25. A. N. Tihonov, On the dependence of the solutions of the differential equations on a small parameter, Mat. Sb. 31 (1948), 575-586