References
- W. B. Adams and J. A. Benson, The generation and modulation of endogenous rhythmicity in the aplysia bursting pacemaker neurone R15, Progr. Biophys. Molec. Biol. 46 (1985), 1-49 https://doi.org/10.1016/0079-6107(85)90011-2
- S. M. Baer, T. Erneux, and J. Rinzel, The slow passage through a Hopf bifurcation: delay, memory effects, and resonances, SIAM J. Appl. Math. 49 (1989), 55-71 https://doi.org/10.1137/0149003
- R. Bertram, M. J. Butte, T. Kiemel, and A. Sherman, Topological and phenomenological classification of bursting oscillations, Bull. Math. Biol. 57 (1995), 413-439 https://doi.org/10.1007/BF02460633
- R. J. Butera, J. Rinzel, and J. C. Smith, Models of respiratory rhythm generation in the pre-Botzinger complex: I. Bursting pacemaker model, J. Neurophysiology 82 (1999), 382-397 https://doi.org/10.1152/jn.1999.82.1.382
-
T. R. Chay and J. Keizer, Minimal model for membrane oscillations in the pan- creatic
$\beta$ -cell, Biophys. J. 42 (1983), 181-190 https://doi.org/10.1016/S0006-3495(83)84384-7 - C. A. Del Negro, C. F. Hsiao, S. H. Chandler, and A. Garfinkel, Evidence for a novel bursting mechanism in rodent trigeminal neurons, Biophys. J. 75 (1998), 174-182 https://doi.org/10.1016/S0006-3495(98)77504-6
- G. de Vries, Multiple bifurcations in a polynomial model of bursting oscillations, J. Nonlinear Sci. 8 (1998), 281-316 https://doi.org/10.1007/s003329900053
- G. B. Ermentrout and N. Kopell, Parabolic bursting in an excitable system coupled with a slow oscillation, SIAM J. Appl. Math. 46 (1986), 233-253 https://doi.org/10.1137/0146017
- N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations 31 (1979), 53-98 https://doi.org/10.1016/0022-0396(79)90152-9
- M. Golubitsky, K. Josic, and T. J. Kaper, An unfolding theory approach to bursting in fast-slow systems, In: Global Analysis of Dynamical Systems (H.W. Broer, B. Krauskopf and G. Vegter, eds.), Institute of Physics Publ. (2001), 277-308
- J. Guckenheimer and P. J. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983
- E. M. Izhikevich, Neural excitability, spiking and bursting, Inter. J. Bifur. Chaos 10 (2000), no. 6, 1171-1266 https://doi.org/10.1142/S0218127400000840
- Y. A. Kuznetsov, Elements of applied bifurcation theory, Springer-Verlag, New York, 1995
- E. Lee, Stability analysis of parabolic bursting, In preparation
- E. Lee and D. Terman, Uniqueness and stability of periodic bursting solutions, J. Differential Equations 158 (1999), 48-78 https://doi.org/10.1016/S0022-0396(99)80018-7
- C. Morris and H. Lecar, Voltage oscillations in the barnacle giant muscle fiber, Biophys. J. 35 (1981), 193-213 https://doi.org/10.1016/S0006-3495(81)84782-0
- A. Nejshtadt, Asymptotic investigation of the loss of stability by an equilibrium as a pair of eigenvalues slowly cross the imaginary axis, Uspekhi Mat. Nauk 40 (1985), 190-191
- R. E. Plant and M. Kim, On the mechanism underlying bursting in the Aplysia abdominal ganglion R-15 cell, Math. Biosci. 26 (1975), 357-375 https://doi.org/10.1016/0025-5564(75)90022-X
- J. Rinzel, A formal classification of bursting mechanisms in excitable systems, In: Proceedings of the International Congress of Mathematicians, vol. 1 & 2 (pp. 1578-1593). American Mathematical Society, Providence, RI, 1987
- J. Rinzel and Y. S. Lee, On different mechanism for membrane potential bursting, In: Lecture Notes in Biomathematics, vol. 66 (pp. 19-33). Springer-Verlag, New York, 1986
- J. Rubin and D. Terman, Geometric singular perturbation analysis of neuronal dynamics, In: Handbook of Dynamical Systems, vol.3: Towards Applications, Elsevier, 2002
-
A. Sherman, J. Rinzel, and J. Keizer, Emergence of organized bursting in clusters of pancreatic
${\beta}$ -cells by channel sharing, Biophys. J. 54 (1988), 411-425 https://doi.org/10.1016/S0006-3495(88)82975-8 - D. Terman, Chaotic spikes arising from a model for bursting in excitable mem- branes, SIAM J. Appl. Math. 51 (1991), 1418-1450 https://doi.org/10.1137/0151071
- D. Terman, The transition from bursting to continuous spiking in excitable membrane models, J. Nonlinear Sci. 2 (1992), 135-182 https://doi.org/10.1007/BF02429854
- A. N. Tihonov, On the dependence of the solutions of the differential equations on a small parameter, Mat. Sb. 31 (1948), 575-586