DOI QR코드

DOI QR Code

FREE ACTIONS OF FINITE ABELIAN GROUPS ON 3-DIMENSIONAL NILMANIFOLDS

  • Published : 2005.07.01

Abstract

We study free actions of finite abelian groups on 3­dimensional nilmanifolds. By the works of Bieberbach and Waldhausen, this classification problem is reduced to classifying all normal nilpotent subgroups of almost Bieberbach groups of finite index, up to affine conjugacy. All such actions are completely classified.

Keywords

References

  1. H. Y. Chu and J. K. Shin, Free actions of finite groups on the 3-dimensional nilmanifold, Topology Appl. 144 (2004), 255-270 https://doi.org/10.1016/j.topol.2004.05.006
  2. K. Dekimpe, P. Igodt, S. Kim, and K. B. Lee, Affne structures for closed 3-dimensional manifolds with nil-geometry, Quart. J. Mech. Appl. Math. 46 (1995), 141-167
  3. K. Y. Ha, J. H. Jo, S. W. Kim, and J. B. Lee, Classification of free actions of finite groups on the 3-torus, Topology Appl. 121 (2002), no. 3, 469-507 https://doi.org/10.1016/S0166-8641(01)00090-6
  4. W. Heil, On $P^2$-irreducible 3-manifolds, Bull. Amer. Math. Soc. 75 (1969), 772- 775 https://doi.org/10.1090/S0002-9904-1969-12283-4
  5. W. Heil, Almost sufficiently large Seifert fiber spaces, Michigan Math. J. 20 (1973), 217-223 https://doi.org/10.1307/mmj/1029001101
  6. J. Hempel, Free cyclic actions of $S^1{\times}S^1{\times}S^1$, Proc. Amer. Math. Soc. 48 (1975), no. 1, 221-227 https://doi.org/10.2307/2040721
  7. K. B. Lee, There are only finitely many infra-nilmanifolds under each manifold, Quart. J. Mech. Appl. Math. 39 (1988), 61-66
  8. K. B. Lee and F. Raymond, Rigidity of almost crystallographic groups, Contemp. Math. 44 (1985), 73-78 https://doi.org/10.1090/conm/044/813102
  9. K. B. Lee, J. K. Shin, and Y. Shoji, Free actions of finite abelian groups on the 3-Torus, Topology Appl. 53 (1993), 153-175 https://doi.org/10.1016/0166-8641(93)90134-Y
  10. P. Orlik, Seifert Manifolds, Lecture Notes in Math. 291, Springer-Verlag, Berlin, 1972
  11. P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), 401-489 https://doi.org/10.1112/blms/15.5.401
  12. J. K. Shin, Isometry groups of unimodular simply connected 3-dimensional Lie groups, Geom. Dedicata 65 (1997), 267-290 https://doi.org/10.1023/A:1004957320982
  13. F. Waldhausen, On irreducible 3-manifolds which are suffciently large, Ann. of Math. 87 (1968), no. 2, 56-88 https://doi.org/10.2307/1970594
  14. S. Wolfram, Mathematica, Wolfram Research, 1993

Cited by

  1. Classification of partially hyperbolic diffeomorphisms in 3-manifolds with solvable fundamental group vol.8, pp.3, 2015, https://doi.org/10.1112/jtopol/jtv009
  2. Group extensions and free actions by finite groups on solvmanifolds 2010, https://doi.org/10.1002/mana.200710058