DOI QR코드

DOI QR Code

LATTICE ACTION ON FINITE VOLUME HOMOGENEOUS SPACES

  • OH HEE (California Institute of Technology Pasadena)
  • 발행 : 2005.07.01

초록

We study the distribution of a dense orbit of a lattice A acting by the right multiplication on the space $\Gamma/G$ where G is a connected simple Lie group and $\Gamma$ its lattice. We show that for $G=SL_n(\mathbb{R})$, every dense orbit is equidistributed with respect to the Euclidean norm.

키워드

참고문헌

  1. S. G. Dani and G. Margulis Limit distribution of orbits of unipotent $^{\circ}$ows and values of quadratic forms, Adv. Sov. Math. 16 (1993), 91-137
  2. S. G. Dani and G. Margulis Asymptotic behavior of trajectories of unipotent $^{\circ}$ows on homogeneous spaces, Proc. Indian. Acad. Sci. Math. Sci. 101 (1991), no. 1
  3. W. Duke, Z. Rudnick, and P. Sarnak, Density of integer points on affine homo- geneous varieties, Duke Math. J. 71 (1993), no. 1, 143-179 https://doi.org/10.1215/S0012-7094-93-07107-4
  4. A. Gorodnik, Lattice action on the boundary of SLn(R), Ergodic Theory Dynam. Systems 23 (2003), 1817-1837 https://doi.org/10.1017/S0143385703000154
  5. A. Gorodnik and H. Oh, Orbits of discrete subgroups on a symmetric space and the Furstenberg boundary, preprint
  6. A. Gorodnik and B. Weiss, Distribution of orbits of lattices on homogeneous varieties, preprint
  7. S. Mozes and N. Shah, On the space of ergodic invariant measures of unipotent flows, Ergodic Theory Dynam. Systems 15 (1995), 149-159
  8. M. S. Raghunathan, Discrete subgroups of Lie groups, Springer-Verlag, New York, 1972
  9. M. Ratner, On Raghunathan's measure conjecture, Ann. of Math. 134 (1991), 545-607 https://doi.org/10.2307/2944357
  10. M. Ratner, On Raghunathan's topological conjecture and distribution of unipotent flows, Duke Math. J. 63 (1991), 235-280 https://doi.org/10.1215/S0012-7094-91-06311-8
  11. N. Shah, Limit distribution of polynomial trajectories on homogeneous spaces, Duke Math. J. 75 (1994), 711-732 https://doi.org/10.1215/S0012-7094-94-07521-2
  12. N. Shah, Limit distribution of expanding translates of certain orbits on homoge- neous spaces on homogeneous spaces, Proc. Indian. Acad. Sci. Math. Sci. 106 (1996), 105-125 https://doi.org/10.1007/BF02837164
  13. N. Vatsal, Uniform distribution of Heegner points, Invent Math. 148 (2002), 1-48 https://doi.org/10.1007/s002220100183