DOI QR코드

DOI QR Code

Flexural Analysis of RC Beam Considering Autogenous Shrinkage Model

자기수축 모델을 고려한 철근콘크리트 보의 휨 거동 해석

  • Published : 2005.08.01

Abstract

Recently, it is noticed that autogenous shrinkage of high-performance concrete causes early crack in high performance concrete structures. The purpose of the present study is to derive a realistic equation to estimate the autogenous shrinkage of high performance concrete and to apply to structural analysis. For this purpose, several series of concrete specimens have been tested. When water-binder ratio is fixed to $30\%$, major test variables were the type and contents of mineral admixture. The autogenous shrinkage of HPC with fly ash slightly decreased than that of OPC concrete, but the use of blast furnace slag increased with the autogenous shrinkage. A prediction equation to estimate the autogenous shrinkage of HPC with mineral admixture was derived and proposed in this study. The proposed equation show reasonably good correlation with test data on autogenous shrinkage of HPC with mineral admixture. The finite element program developed in this study provides the useful tool for the flexural analysis including the autogenous shrinkage model. By this program, we know that the tensile stress considering the autogenous shrinkage of reinforced concrete structures increase $20\~27\%$ than that not considering.

최근 고성능 콘크리트의 경우 자기수축으로 인해 발생되는 초기균열에 대한 관심이 커지고 있다. 본 논문의 목적은 고성능 콘크리트의 자기수축 예측모델의 제안 및 이를 통한 철근콘크리트 부재의 휨 거동 영향 분석에 있다. 이를 위해 물-결합재비가 $30\%$이고 광물질 혼화재의 종류 및 치환율을 변수로 한 자기수축 실험을 수행하였다. 실험 결과 플라이애쉬를 혼입한 고성능 콘크리트의 자기수축은 OPC 콘크리트의 경우에 비해 감소하였으며, 고로슬래그미분말 및 실리카퓸을 치환한 경우에는 증가하였다. 실험 결과에 대한 회귀분석을 통해 광물질 혼화재를 혼입한 고성능 콘크리트의 자기수축 예측식을 수정 제안하였으며, 제안된 자기수축 예측식은 실험 결과와 비교적 일치하였다. 본 연구에서 제안된 유한요소해석 프로그램은 자기수축을 고려한 휨 해석을 가능하도록 하였으며, 이를 이용한 구조해석 결과 철근콘크리트 구조물의 자기수축을 고려한 휨 응력은 자기수축을 고려하지 않은 경우와 비교하여 $20\~27\%$ 정도 크게 나타났다.

Keywords

References

  1. Neville, A. M., Properties of Concrete, Addison Wesley Longman Limited, London, 1995, pp.425-438
  2. CEB-FIP 2000, Structural Concrete ?' Textbook on Behavior, Design and Performance, Vol.1, Sprint-Druck Stuttgart, 1999, pp.43-46
  3. Kang, Y. J., Nonlinear Geometric, Material and Time Dependent Analysis of Reinforced and Prestressed Concrete Frames, University of California at Berkely, Report No. UCB/SESM 77-1, Jan., 1977
  4. Kang, Y. J., SPCFRAME-Computer Program for Nonlinear Segmental Analysis of Planar Concrete Frames, University of California at Berkely, Report No. UCB/SESM 89/07, 1989
  5. Choudhury, D., Analysis of Curved Nonprismatic Reinforced and Prestressed Concrete Box Girder Bridges, University of California at Berkely, Report No. UCB/SESM 86/13, 1986
  6. 自己收縮硏究委員, コンクリ一トの自己收縮服究委員會 報告書, 日本コンクリ一ト工學協會,2002,pp.241-245
  7. 고경택, 박정준, 이종석, 김성욱, '광물질 혼화재를 사용한 고성능 콘크리트의 수축특성', 대한토목학회논문집, Vol.23, No.A-6, 2003, pp.1133-1141
  8. Myazawa, S. and Tazawa, E., 'Prediction Model for Shrinkage of Concrete Including Autogenous Shrinkage, Creep, Shrinkage and Durability Mechanics of Concrete and Other Quasi-Brittle Materials', Proceedings of Sixth International Conference, Elsevier Science Ltd,. 2001, pp.735-746
  9. Jonasson, J. and Hedlund, H., 'An Engineering Model for Creep and Shrinkage in High Performance Concrete', Proceedings of International RILEM Workshop on Shrinkage of Concrete, Shrinkage 2000, Edited by Baroghel-Bouny, V and Aitcin, P. C, Paris, France, 2000, pp.173-178
  10. RILEM TC 119-TCE, 'Avoidance of Theral Cracking in Concrete at Early Age Recommendations', Materials and Structures, Vol.30, No.202, 1997, pp.451-464 https://doi.org/10.1007/BF02524773