Asymptotic Analysis for Hydraulic Fractures and Applicability of Boundary Collocation Method

수압파쇄균열의 점근적 해석과 경계병치법의 적용성

  • 심영종 (한국과학기술원 스마트 사회기반시설 연구센터) ;
  • 김홍택 (홍익대학교 토목공학과)
  • Published : 2005.08.01

Abstract

The occurrence of multi-segmented hydraulic fractures that show different behavior from the single fracture is common phenomenon. However, it is not easy to evaluate the behavior of multiple fractures computed by most numerical techniques because of complicated process computation. This study presents how to efficiently calculate the displacement of the multi-segmented hydraulic fractures using the boundary collocation method (BCM). First of all, asymptotic solutions are obtained for the closely spaced overlapping fractures and are compared with those by the BCM where the number of collocation points is varied. As a result, the BCM provides an excellent agreement with the asymptotic solutions even when the number of collocation points is reduced ten times as many as that of conventional implementations. Accordingly, the numerical simulation of more realistic and, hence, more complex fracture geometries by the BCM would be valid with such a significant reduction of the number of collocation points.

수압파쇄시 다중으로 분할된 균열의 생성은 자주 발생되는 현상이며 이러한 균열군은 단균열과는 달리 상당히 다른 거동을 나타낸다. 그러나 대부분의 수치기법으로는 이러한 균열군 거동의 모사는 계산량의 증가로 결코 쉽지 않다. 따라서 본 논문에서는 수압파쇄시 생성되는 다수의 균열 변위를 경계병치법을 사용하여 효과적으로 계산하기 위한 방법을 제시하였다. 우선 평행하면서 아주 가깝게 위치한 다중 분할 균열의 점근적 해를 구하고 경계병치법의 균열에 사용된 병치점의 수를 변화시켜 점근적 해와 비교하였다. 그 결과 기존의 기준에 비해 병치점의 수를 10배정도 줄이더라도 얻어지는 결과에는 별 차이가 없음을 밝혀냈다. 따라서 이보다 더욱 복잡한 균열이 존재하는 실제의 경우 병치점의 수를 줄여 적용하여도 경계병치법에 의한 계산은 유효하다는 결론을 얻었다.

Keywords

References

  1. Erdogan, F. and Gupta, G.D. (1972), 'On the Numerical Solution of Singular Integral Equations', The Quarterly Journal of Pure and Applied mathematics, 29, pp.525-534
  2. Gere, J.M. and Timoshenko, S.P. (1991), Mechanics of materials, Chapman & Hall, London
  3. Germanovich, L. N., Astakhov, D.K, Shlyapobersky, J., Mayerhofer, M.J., Dupont, C., and Ring, L.M. (1998), 'Modeling Multisegmented Hydraulic Fracture in Two Extreme Cases: No Leakoff and Dominating Leakoff', International Journal of Rock Mechanics and Mining Sciences, 35(4-5)
  4. Hom, H. and Nemat-Nasser, S. (1985), 'Elastic Fields of Interacting Inhomogenieties', International Journal of Solids and Structures, 21(7), pp.731-745 https://doi.org/10.1016/0020-7683(85)90076-9
  5. Isida, M. (1970), 'Analysis of Stress Intensity Factors for Plate Containing Random Array of Cracks', Bulletin of the JSME, 13(59), pp.635-642 https://doi.org/10.1299/jsme1958.13.635
  6. Jeffrey, R.G., Vandamme, L., and Roegiers, J.-C. (1987), 'Mechanical Interactions in Branched or Subparallel Hydraulic Fractures', SPE 16422
  7. Naceur, K.B. and Roegiers, J.-C. (1990), 'Design of Fracturing Treatments in Multilayered Formations', SPE Production Engineering, pp.21-26
  8. Panasyuk, V.V., Savruk, M.P., and Datsyshyn, A.P. (1977), 'A General Method of Solution of Two-Dimensional Problems in the Theory of Cracks', Engineering Fracture Mechanics, pp.9481-9497
  9. Savruk, M.P. and Datsyshin, A.P. (1973), 'On the Limiting State of Equilibrium of a Plate Weakened by Two Arbitrarily-Oriented Cracks', Physico-Mechanical Institute, Academy of Sciences of the Ukrainian SSR, L'vov
  10. Savruk, M.P. and Datsyshin, A.P. (1973), 'On the Limiting State of Equilibrium of a Plate Weakened by Two Arbitrarily-Oriented Cracks', Prikladnaya Mechanika, 9(7), pp.49-56
  11. Tada, H., Paris, P.C., and Irwin, G.R. (1985), The Stress Analysis of Cracks Handbook, Paris Productions Incorporated, St. Louis, Mo
  12. Vandamme, L., Jeffrey, R.G., and Curran, J.H. (1988), 'Pressure Distribution in Three Dimensional Hydraulic Fractures', SPE Production Engineering, pp.181-186