Abstract
The occurrence of multi-segmented hydraulic fractures that show different behavior from the single fracture is common phenomenon. However, it is not easy to evaluate the behavior of multiple fractures computed by most numerical techniques because of complicated process computation. This study presents how to efficiently calculate the displacement of the multi-segmented hydraulic fractures using the boundary collocation method (BCM). First of all, asymptotic solutions are obtained for the closely spaced overlapping fractures and are compared with those by the BCM where the number of collocation points is varied. As a result, the BCM provides an excellent agreement with the asymptotic solutions even when the number of collocation points is reduced ten times as many as that of conventional implementations. Accordingly, the numerical simulation of more realistic and, hence, more complex fracture geometries by the BCM would be valid with such a significant reduction of the number of collocation points.
수압파쇄시 다중으로 분할된 균열의 생성은 자주 발생되는 현상이며 이러한 균열군은 단균열과는 달리 상당히 다른 거동을 나타낸다. 그러나 대부분의 수치기법으로는 이러한 균열군 거동의 모사는 계산량의 증가로 결코 쉽지 않다. 따라서 본 논문에서는 수압파쇄시 생성되는 다수의 균열 변위를 경계병치법을 사용하여 효과적으로 계산하기 위한 방법을 제시하였다. 우선 평행하면서 아주 가깝게 위치한 다중 분할 균열의 점근적 해를 구하고 경계병치법의 균열에 사용된 병치점의 수를 변화시켜 점근적 해와 비교하였다. 그 결과 기존의 기준에 비해 병치점의 수를 10배정도 줄이더라도 얻어지는 결과에는 별 차이가 없음을 밝혀냈다. 따라서 이보다 더욱 복잡한 균열이 존재하는 실제의 경우 병치점의 수를 줄여 적용하여도 경계병치법에 의한 계산은 유효하다는 결론을 얻었다.