DOI QR코드

DOI QR Code

Cytoprotective Effects of Polyamines Against Oxidative Stress

산화 스트레스에 대한 폴리아민의 세포보호 효과

  • Ahn Seoni (Department of Biology, Pusan National University) ;
  • Lee Ji Young (Institute of Genetic Engineering Pusan National University) ;
  • Chung Hae Young (Institute of Genetic Engineering, Pusan National University, Department of Pharmacy, Pusan National University) ;
  • Yoo Mi-Ae (Institute of Genetic Engineering, Pusan National University, Department of Molecular Biology, Pusan National University) ;
  • Kim Jong-Min (Department of Anatomy and Cell Bilogy, College of Medicine, Dong-A University) ;
  • Kim Byeong Gee (Department of Biology, Pusan National University, Institute of Genetic Engineering, Pusan National University)
  • 안선이 (부산대학교 자연대 생물학과) ;
  • 이지영 (부산대학교 유전공학연구소) ;
  • 정해영 (부산대학교 유전공학연구소, 약대 약학과) ;
  • 유미애 (부산대학교 유전공학연구소, 자연대 분자생물학과) ;
  • 김종민 (동아대학교 의과대학 해부학교실) ;
  • 김병기 (부산대학교 자연대 생물학과, 유전공학연구소)
  • Published : 2005.08.01

Abstract

The polyamines are essential components of all eukaryotic cells and absolutely necessary for cell growth. In the present study, the cytoprotective role of polyamine was characterized. When $Ac_2F$ rat liver cells were treated with 1M 2,2'-azobis (2-amidinopropane) dehydrochloride (AAPH), a water soluble free radical initiator, viability of the cells was noticeably decreased due to the increase of reactive oxygen species (ROS). The cytotoxic effect of AAPH as well as ROS generation were significantly inhibited by the treatment of polyamines. Among polyamines, especially spermine at $20{\mu}M$ concentration exerted over $45\%$ inhibition of AAPH-induced ROS generation. Western blotting was performed to determine whether superoxide dismutase(SOD) or catalase (CAT) expression was involved in oxidative stress. The AAPH treatment blocked both SOD and CAT protein expressions. Spermine could recover those protein expressions to the untreated control levels. According to the result of cycline E measurement, AAPH might block the entry of the cells into S phase of the cell cycle. The reduced expression of cyclin E protein could be fully recovered by the addition of spermine. The antioxidative effects of spermine was also further proved by the apopotitic morphological analysis using ethidium bromide and acridine orange.

폴리아민은 모든 진핵세포에서 발견되는 다가 양이온성의 저분자 물질이며 세포성장에 필수적인 것으로 알려져 있다. 본 논문에서는 폴리아민의 역할 중에서 산화적인 스트레스에 대한 세포보호 효과를 연구하였다. 쥐의 간세포주인 $Ac_2F$에 산화 스트레스를 유발하기 위하여 2,2'-azobis(2-amidinopropane)dehydrochloride (AAPH)를 처리하였을 때, 세포증식은 농도 의존적으로 감소하였다. 배지에 폴리아민을 첨가하였을 때 세포성장은 농도 의존적으로 증가하였으며 ROS 발생은 현저히 감소하였다. 폴리아민 가운데 특히 spermidine과 spermine이 뚜렷한 세포증식효과를 보였다. Spermine의 경우, $20{\mu}M$농도에서 AAPH에 의해 유도된 ROS발생을 $45\%$나 감소시켰다. 산화 스트레스에 관여하는 효소들 가운데 주된 효소인 superoxide dismutate (SOD)와 catalase (CAT)의 세포 내 단백질을 Western blotting으로 조사한 결과, AAPH는 이 두 가지 단백질의 생성을 억제한 것으로 나타났다. 그러나 spermine을 처리하였을 때 두 단백질의 생산은 모두 정상적으로 회복이 되었다. 또한 세포주기의 중요한 조절 단백질인 cyclin E 역시 AAPH에 의하여 생성이 억제되었다. 이는 AAPH에 의하여 생성된 ROS가 세포주기의 S phase의 진행을 억제한 것으로 생각된다. AAPH에 의한 cyclin E의 억제는 spermine에 의하여 정상적으로 회복되었다. 위와 같은 Spermine의 항산화 효과는 ethidium bromide와 acridine orange를 이용하여 형태학적으로도 증명되었다.

Keywords

References

  1. Azbill, R. D., X. Mu, A J. Bruce-Keller, M. P. Mattson and J. E. Springer. 1997. Impaired mitochondiaI function, oxidative stress and altered antioxidant enzyme activies following traumatic spinal cord injury. Brain Res. 765, 283-290 https://doi.org/10.1016/S0006-8993(97)00573-8
  2. Cacciuttolo, M. A, L. Trinh, J. A Lumpkin and G. Rao. 1993. Hyperoxia induce DNA damage in mammalian cells. Free Radicals BioI. Med. 14, 267-276 https://doi.org/10.1016/0891-5849(93)90023-N
  3. Corroyer, S., B. Maitre, V. Catals and A. Clement. 1996. Altered regulation of G.1 cyclins in oxidant-induced growth arrest of lung alveolar epithelial cells: accumulation of inactive cyclin E-DCK2 complexes. J. Bio. Chem. 271, 25117-25125 https://doi.org/10.1074/jbc.271.41.25117
  4. Cristiano, F., J. B. de Haan, R. C. Lannello and I. Kola. 1995. Changes in the levels of enzymes which modulate the antioxidant balance occur during aging and correlate with cellular damage mechanism. Ageing Dev. 80, 93-105 https://doi.org/10.1016/0047-6374(94)01561-Y
  5. Feuerstein, B. G. and L. J. Marton. 1989. Molecular dynamics of spermine-DNA interactions:sequence specificity and DNA binding for a simple ligand. Nuc. Acids Res. 17, 6883-6892 https://doi.org/10.1093/nar/17.17.6883
  6. Freeman, B. D. 1984. Biological sites and mechanisms of free radical production, pp.43-52, In Slater, T. F. (ed.), Free radicals in Molecular Biology, Aging and Disease, Raven Press, New York
  7. Ha, H. C., N. S. Sirisoma, P. Kuppusamy, J. L. Zweier, P. M. Woster and R. A. Casero. 1998. The natural polyamine spermine functions directly as a free radical scavenge. Pro. Natl. Acad. Sci. USA 95, 11140-11145
  8. Lovaas, E. 1997. Antioxidative and metal-chelating effects of polyamines. Adv. Pharmacol. 38, 119-149
  9. O'Reilly, M. A., R. J. Staversky B. R, Stripp and J. N. Finkelstein. 1998. Exposure to hyperoxia induces p53 expression in mouse lung epithelium. Cell Mol. BioI. 18, 43-50
  10. Puntarulo, S., M. Galleano, R. A. Sanchez and A. Boveris. 1991. A superoxide anion and hydrogen peroxide meltabolism in soybean embryonic axes during germination. Biochem. Biophs. Acta. 1074, 277-283 https://doi.org/10.1016/0304-4165(91)90164-C
  11. Quinlan, T., S. Spivacle and B. T. Mossman. 1994. Regulation of antiomident enzymes in lung after oxidant injury. Environ. Health Perspect. 102, 79-87 https://doi.org/10.1289/ehp.9410279
  12. Rawling, J. M., M. M. Apsimon and J. B. Kirkland. 1996. Lung poly (ADD-ribose) and NAD+ concentrations during hyperoxia and niacin deficiency in the Fischer-344 rat, Free Radicals BioI. Med. 20, 865-871 https://doi.org/10.1016/0891-5849(95)02185-X
  13. Redman, C., M. J. Xu, Y.-M. Peng, J. A. Scott, C. Payne, L. C. Clark and M. A. Nelson. 1997. Involvement of poly-amines in selenomthionine induced apoptosis and mitotic alterations in human tunor cells. Carcinogenesis 18, 1195-1202 https://doi.org/10.1093/carcin/18.6.1195
  14. Rodger, A., K. J. Sanders, M. J. Hannon, I. Meistermann, A. Parkinson, D. S. Vidler and I. S. Haworth. 2000. DNA structure control by polycationic sp.: polyamine, cobalt amines, and di-metallo transition metal chelates. Chirality 12, 221-236 https://doi.org/10.1002/(SICI)1520-636X(2000)12:4<221::AID-CHIR9>3.0.CO;2-3
  15. Schipper, R. G., J. C. Romijin, V. M. Cuijpers and A. A. Verhofstad. 2003. Polyamines and prostate cancer. Biochm. Soc. Trans. 31, 375-380 https://doi.org/10.1042/BST0310375
  16. Singal, P. K., N. Khaper , V. Palace and D. Kumar. 1998. The role of oxidative stress in the genesis of heart disease. Cardiovasc. Res. 40, 426-432 https://doi.org/10.1016/S0008-6363(98)00244-2
  17. Sullivan, S. J., T. D. Oberley, R. J. Robert and D. R. Spitz. 1992. Astable $O_2$-resistant cell line: role of lipid peroxidation byproducts in $O_2$-mediated injury. Am. J. Physiol. 262, L748-756
  18. Vaux, D. L. and A. Strasser. 1996. The molecular biology of apoptosis. Proc. Nail. Acad. Sci. USA 93, 239-2244