DOI QR코드

DOI QR Code

Developmental Expression of Neurofilament 3 (NF-M) in the Cultured Rat Cortical Neurons

배양한 흰쥐 대뇌신경세포에서 신경미세섬유 3(NF-M)의 발생학적 표현

  • Jung Jae-Seob (Department of Anatomy, College of Medicine, Dongguk University) ;
  • Cho Sun-Jung (Department of Microbiology, College of Natural Sciences, Kyungpook National University) ;
  • Jin IngNyol (Department of Microbiology, College of Natural Sciences, Kyungpook National University) ;
  • Jung Seung Hyun (Department of Internal Medicine, College of Oriental Medicine, Dongguk University) ;
  • Moon Il Soo (Department of Anatomy, College of Medicine, Dongguk University)
  • 정재섭 (동국의대 해부학교실) ;
  • 조선정 (경북대학교 자연과학대학 미생물학과) ;
  • 진익렬 (경북대학교 자연과학대학 미생물학과) ;
  • 정승현 (동국한의대 내과) ;
  • 문일수 (동국의대 해부학교실)
  • Published : 2005.08.01

Abstract

Neurofilament (NF) proteins constitute the major intermediate filament type in adult neurons. They are made up by the copolymerization of the neurofilament light (NF-L, 61 kDa), medium (NF-M, 90kDa), and heavy (NF-H, 115 kDa) proteins. Although neurofilaments play a crucial .ole in neuronal growth, organization, shape, and plasticity, their expression pattern and cellular distribution in the developing neurons remain unknown. In this study, we have produced a rabbit polyclonal antibody specific to NF-M and investigated expression of NF-M in cultured cortical neurons. Immunostaining of 12 and 24 h cultures revealed strong expression of NF-M in axonal growth cone and in the region of a soma toward the axon. Doublestaining of 4 and 14 DIV corical neurons with NF-M and PSD95 antibodies revealed that both axon and dendrites were stained intensely with NF-M antibody, and that NF-M immunostaining along dendrites is often punctate and colocalize with PSD95 puncta, indicating that the puncta represent postsynaptic spines. Presence of NF-M in the postsynaptic spine was also indicated by immunoblot analysis of the postsynaptic density fraction. Taken together, our results show intensive targeting of NF-M into axons in the early axonal development, and into spines in mature neurons, indicating its important functions in axon and spine development.

신경미세섬유(neurofilament, NF) 단백질은 신경세포의 주된 중간세사로서, NF-L (61 kDa), NF-M (90 kDa) 및 NF-H (115 kDa) 단백질의 공동중합체로 구성된다. 신경세사섬유는 신경세포의 성장, 구성, 형태 및 가소성에 중요한 역할을 하지만 발생학적 표현에 대하여는 아직 잘 알려지지 않았다. 본 연구에서는 NF-M에 특이한 항체를 제조하여 배양한 대뇌신경세포에서 NF-M의 표현을 조사하였다. 배양 12 및 24시간 세포에서 NF-M은 축삭과 그 성장추 그리고 축삭에 가까운 세포체에 강하게 표현하였다. 배양 4 및 14일 신경세포를 NF-M과 PSD95 항체로 이중염색한 결과 NF-M은 축삭과 가지돌기에 공히 강하게 표현되었으며, PSD95와 같이 위치할 경우에는 점박이로 나타났다. .면역염색에서도 NF-M이 PSD 분획에서 검출되었는데, 따라서 이 점박이는 가지돌기가시임을 시사한다. 본 연구의 결과는 NF-M이 신경세포의 초기 형태발달과정에서 축삭으로 강하게 몰려가며, 성숙한 신경세포에서는 가지돌기 및 가지돌기가시에도 위치하여 특정기능을 수행함을 시사한다.

Keywords

References

  1. Brewer, G. J., J. R. Torricelli, E. K. Evege and P. J. Price. 1993. Optimized survival of hippocampal neurons in B27supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567-576 https://doi.org/10.1002/jnr.490350513
  2. Chen, J., T. Nakata, Z. Zhang and N. Hirokawa. 2000. The Cterminal tail domain of neurofilament protein-H (NF-H) forms the crossbridges and regulates neurofilament bundle formation. J. Cell Sci. 113 Pt 21, 3861-3869
  3. Ching, G. Y. and R. K. Liem. 1993. Assembly of type IV neuronal intermediate filaments in nonneuronal cells in the absence of preexisting cytoplasmic intermediate filaments. J. Cell Biol. 122, 1323-1335 https://doi.org/10.1083/jcb.122.6.1323
  4. Cho, S. J., J. S. Jung, B. H. Ko, I. Jin and I. S. Moon. 2004. Presence of translation elongation factor-1A (eEF1A) in the excitatory postsynaptic density of rat cerebral cortex. Neurosci. Lett. 366, 29-33 https://doi.org/10.1016/j.neulet.2004.05.036
  5. Elder, G. A, V. L. Jr Friedrich, C. Kang, P. Bosco, A Gourov, P. H. Tu, B. Zhang, V. M. Lee and R. A. Lazzarini. 1998. Requirement of heavy neurofilament subunit in the development of axons with large calibers. J. Cell BioI. 143, 195-205 https://doi.org/10.1083/jcb.143.1.195
  6. Elder, G. A, V. L. Jr Friedrich, A. Margita and R. A. Lazzarini. 1999. Age-related atrophy of motor axons in mice deficient in the mid-sized neurofilament subunit. J. Cell Biol. 146, 181-192 https://doi.org/10.1083/jcb.146.999.181
  7. Fuchs, E. and D. W. Cleveland. 1998. A structural scaffolding of intermediate filaments in health and disease. Science 279, 514-519 https://doi.org/10.1126/science.279.5350.514
  8. Herrmann, H. and U. Aebi. 2000. Intermediate filaments and their associates: multi-talented structural elements specifying cytoarchitecture and cytodynamics. Curr. Opin. Cell Biol. 12, 79-90 https://doi.org/10.1016/S0955-0674(99)00060-5
  9. Jacomy, H., Q. Zhu, S. Couillard-Despres, J. M. Beaulieu and J. P. Julien. 1999. Disruption of type IV intermediate filament network in mice lacking the neurofilament medium and heavy subunits. J. Neurochem. 73, 972-984 https://doi.org/10.1046/j.1471-4159.1999.0730972.x
  10. Julien, J. P. and W. E. Mushynski. 1983. The distribution of phosphorylation sites among identified proteolytic fragments of mammalian neurofilaments. J. Biol. Chem. 258, 401-4025
  11. Lariviere, R C. and J. P. Julien. 2004. Functions of intermediate filaments in neuronal development and disease. J. Neurobiol. 58, 131-48 https://doi.org/10.1002/neu.10270
  12. Lariviere, R C., M. D. Nguyen, A. Ribeiro-da-Silva and J. P. Julien. 2002. Reduced number of unmyelinated sensory axons in peripherin null mice. J. Neurochem. 81, 525-532 https://doi.org/10.1046/j.1471-4159.2002.00853.x
  13. Lee, M. K., Z. Xu, P. C. Wong and D. W. Cleveland. 1993. Neurofilaments are obligate heteropolymers in vivo. J. Cell BioI. 122, 1337-1350 https://doi.org/10.1083/jcb.122.6.1337
  14. Levavasseur, F., Q. Zhu and J. P. Julien. 1999. No requirement of alpha-internexin for nervous system development and for radial growth of axons. Brain Res. Mol. Brain Re. 69, 104-112 https://doi.org/10.1016/S0169-328X(99)00104-7
  15. Lopez-Picon, F. R, M. Uusi-Oukari, I. E. Holopainen. 2003. Differential expression and localization of the phosphorylated and nonphosphorylated neurofilaments during the early postnatal development of rat hippocampus. Hippocampus 13, 767-779 https://doi.org/10.1002/hipo.10122
  16. Moon, I. S., S. J. Cho, J. S. Jung, I. S. Park, D. K. Kim, J. T. Kim, B. H. Ko and I. Jin. 2004a. Presence of translation elongation factor-1A in the rat cerebellar postsynaptic density. Neurosci. Lett. 362, 53-56 https://doi.org/10.1016/j.neulet.2004.02.037
  17. Moon, I. S. and B. H. Ko. 2004b. Neuronal protection by Rooibos (Aspalathus linearis) tea infusions in a hypoxic model of cultured rat cortical neurons. J. Life Sci. 14, 291-295 https://doi.org/10.5352/JLS.2004.14.2.291
  18. Moon, I. S., I. S. Park, L. T. Schenker, M. B. Kennedy, J. I. Moon and I. Jin. 2001. Presence of both constitutive and inducible forms of heat shock protein 70 in the cerebral cortex and hippocampal synapses. Cereb. Cortex 11, 238-248 https://doi.org/10.1093/cercor/11.3.238
  19. Rao, M. V., M. L. Garcia, Y. Miyazaki, T. Gotow, A. Yuan, S. Mattina, C. M. Ward, N. A. Calcutt, Y. Uchiyama, R. A. Nixon, et al. 2002. Gene replacement in mice reveals that the heavily phosphorylated tail of neurofilament heavy subunit does not affect axonaI caliber or the transit of cargoes in slow axonal transport. J. Cell Biol. 158, 681-693 https://doi.org/10.1083/jcb.200202037
  20. Rao, M. V., M. K. Houseweart, T. L. Williamson, T. O. Crawford, J. Folmer and D. W. Cleveland. 1998. Neurofilament-dependent radial growth of motor axons and axonal organization of neurofilaments does not require the neurofilament heavy subunit (NF-H) or its phosphorylation. J. Cell BioI. 142, 171-181
  21. Shevchenko, A, M. Wilm, O. Vorm and M. Mann. 1996. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850-858 https://doi.org/10.1021/ac950914h
  22. Walikonis, R. S., O. N. Jensen, M. Mann, D. W. Jr Provance, J. A. Mercer and M. B. Kennedy. 2000. Identification of proteins in the postsynaptic density fraction by mass spectrometry. J. Neurosci. 20, 4069-4080
  23. Zheng, Y. L., B. S. Li, Veeranna and H. C. Pant. 2003. Phosphorylation of the head domain of neurofilament protein (NF-M): a factor regulating topographic phosphorylation of NF-M tail domain KSP sites in neurons. J. Biol. Chem. 278, 24026-24032 https://doi.org/10.1074/jbc.M303079200
  24. Zhu, Q., M. Lindenbaum, F. Levavasseur, H. Jacomy and J. P. Julien. 1998. Disruption of the NF-H gene increases axonal microtubule content and velocity of neurofilament transport: relief of axonopathy resulting from the toxin beta, beta' -iminodipropionitrile. J. Cell BioI. 143, 183-193 https://doi.org/10.1083/jcb.143.1.183