Sex Detection and In Vitro Development of Biopsied Bovine Embryo for LAMP Based Embryo Sexing

LAMP 방법에 의한 소 수정란의 성 판별과 Biopsy에 따른 수정란의 체외발달

  • Published : 2005.08.01

Abstract

Loop-mediated isothermal amplification (LAMP) is novel DNA amplification methods that amplifies a target sequence specifically under isothemal condition. The present study was to assess the in vitro viability afier biopsy and sexing rate of different types of embryo biopsied. In vivo compact morulae and blastocyst embryos were obtained from Korean Native Cow (KNC) superovulated with FSH (Antorin, R-10) on 7 Day after artificial insemination. in vitro compact morulae and blastocyst embryos were obtained with KNC or Holsteins that were gained on 6, 7 or 8 day after in vitro fertilization(IVF) with frozen semen. Biopsy of bovine embryo was carried out in a $80{\mu}l$ drop with $Ca^{2+}-Mg^{2+}$ free D-PBS and the viability of biopsied embryos were evaluated in IVMD (IFP, Japan) medium at 12 hrs culture time. The sex ratio of biopsied Hanwoo embryos were male vs. female of $43.5\%\;vs.\;56.5\%$ in vivo and $33.9\%\;vs.\;49.2\%$ in vitro respectively, and male rate of biopsied Holstein embryos were significantly higher than female $(70.8\;vs.\;29.2\%)$. and indefinite rate of in vitro embryos was $16.9\%$ and in vivo was not. The degeneration rate of biopsied embryo, in vitro embryos were significantly higher than in vivo $(13.2\%\;vs,\;0.0\%,\;p<0.05)$. The survivability of in vivo embryo were between biopsied following punching method was significantly (P<0.05) higher than bisection method produced embryos $(100\%\;vs.\;83.3\%)$ and in vitro had no difference. However, the degeneration rate of biopsied embryo by bisection method was significantly higher than punching methods between in vivo and in vitro $(16.7\;vs.\;22.6\%,\;respectively,\;p<0.05)$. In conclusion, these results indicate that punching method was optimal and survivability after embryo biopsy was useful for reducing the damage caused by the embryo biopsy procedure for LAMP-based embryo sexing.

수정란의 성 판별은 유전적으로 우수한 유전형질을 보유하고 있는 소의 수정란을 성 판별하므로서 희망하는 성의 송아지를 생산할 수 있으며, 부가가치가 높은 수정란을 확보할 수 있는 기술이다. 수정란의 손상을 최소화하면서 할구를 biopsy하는 기술을 개발하고, 간단하고 빠른 시간에 성 판별이 가능한 Loop-mediated isothermal amplification방법으로 수정란을 성 판별을 실시한 결과는 다음과 같다. 1. 한우 체내 수정란의 성비는 암컷이 $56.5\%$, 수컷이 $43.5\%$였고, 체외 수정란은 암컷이 $49.2\%$, 수컷이 $33.9\%$였다. 그리고, 젖소 체외 수정란의 성비는 암컷이 $29.2\%$, 수컷이 $70.8\%$를 나타내어 한우 체내 및 체외 수정란보다 젖소 체외수정란의 수컷비율이 유의적으로 높게 나타내었다(p<0.05). 또한, 한우 체외 수정란에서 성 판별이 불가능한 것이 $16.9\%$를 나타내어 한우 체내 수정란 및 젖소 체외 수정란과는 유의적인 차이를 나타내었다.(P<0.05). 2. Biopsy한 체내 수정란의 체외 발달율은 $100\%$였으나 체외 수정란에서는 정상적으로 발달하지 못하고 퇴화된 수정란이 $13.2\%$로 체내 수정란보다 유의적으로 높은 결과를 나타내었다.(P<0.05). 3. Punching 방법으로 수정란의 biopsy 후 정상적으로 발달하지 못하고 퇴화된 수정란은 체내 및 체외 수정란에서는 없었으나 biopsy 방법으로 biopsy한 수정란은 체내 및 체외 수정란에서 각각 $16.7\%$$22.6\%$를 나타내어 Punching 방법보다 유의적으로 높은 결과를 나타내었다(P<0.05). 이상의 결과로 보아 한우 체내 수정란은 LAMP방법을 이용하여 간단하고 신속하게 성 판별이 가능하며, 수정란의 biopsy는 punching 방법이 수정란에 손상을 적게 주는 것으로 사료된다.

Keywords

References

  1. Appa Rao KB and Totey SM. 1999. Cloning and sequencing of buffalo male-specific repetitive DNA: sexing of in vitro developed buffalo embryos using multiplex and nested polymerase chain reaction. Theriogenology, 51:785-797 https://doi.org/10.1016/S0093-691X(99)00027-8
  2. Bredbacka K and Brebacka P. 1996. Glucose controls sex-related growth rate differences of bovine embryos produced in vitro. J. Reprod. Fert., 106:169-172 https://doi.org/10.1530/jrf.0.1060169
  3. Carvalho RV, Del Campo MR, Palasz AT, Plante Y and Mapletoft RJ. 1996. Survival rates and sex ratio of bovine IVF embryos frozen at different developmental stage on day 7. Theriogenology, 45:489-498 https://doi.org/10.1016/0093-691X(95)00385-L
  4. Chen CM, Hu CL, Wang CH, Hung CM, Wu HK and Choon KB. 1999. Gender dectermination in single bovine blastomere by polymerase chain reaction amplification of sex-specific polymorphic fragments in the amelogenin gene. Mol. Reprod. Dev., 54:209-214 https://doi.org/10.1002/(SICI)1098-2795(199911)54:3<209::AID-MRD1>3.0.CO;2-6
  5. Chrenek P, Boulanger L, Heyman Y, Uhrin P, Laurincik J and Bulla J. 2001. Sexing and multiple genotype analysis from a single cell of bovine embryo. Theriogenology, 55:1071-1081 https://doi.org/10.1016/S0093-691X(01)00467-8
  6. Epstein CJ, Smith S and Travis B. 1980. Expression of H-Y antigen on preimplantation mouse embryos. Tissue Antigens, 15:63-67 https://doi.org/10.1111/j.1399-0039.1980.tb00886.x
  7. Forell F. 2001. Producao in vitro, biopsia e sexagem de embrioes bovinos. (In vitro production, biopsy, and sexing of bovine embryos) M. Sc Dissertation in Cellular and Molecular Biology. Porto Alegre, RS, Brasil: Universidade Federal do Rio Grande do Sul. 33-42
  8. Grisart B, Massip A, Collette L and Dassy F. 1995. The sex ratio of bovine embryo produced in vitro in serum free oviduct cell-conditioned medium is not altered. Theriogenology, 43:1097-1106 https://doi.org/10.1016/0093-691X(95)00073-H
  9. Harr WCD, Mitchell D, Betteridge KJ, Eaglesome MD and Randall GCB. 1976. Sexing 2-week old bovine embryos by chromosome analysis prior to surgical transfer: preliminary methods and results. Theriogenology, 5:243-53 https://doi.org/10.1016/0093-691X(76)90236-3
  10. Hasler JF, Cardey E, Stokes JE and Bredbacka P. 2002. Nonelectrophoretic PCR-sexing of bovine embryos in a commercial environment. Theriogenology, 58:1457-1469 https://doi.org/10.1016/S0093-691X(02)01044-0
  11. Herr CM, Matthaei KL, Steel T and Reed KC. 1990. Rapid Y-chromosome assay sexing of peripheral blood lymphocytes from Bovidae of known phenotypic sex. Theriogenology, 33:246 https://doi.org/10.1016/0093-691X(90)90670-O
  12. Herr CM and Reed KC. 1991. Micromanipulation of bovine embryos for sex determination. Theriogenology, 35:45-54 https://doi.org/10.1016/0093-691X(91)90147-6
  13. Hiroki H, Soichi K, Satoru M, Ken S, Sadao O, Yoshiyuki T, Seiji K, Keiko T, Keibo T, Keibo W, Tsugunori N, Hidenari Y, Sigenori M and Akira M. 2004a. Rapid sexing of bovine preimplantation embryos usng loop-mediated isothermal amplification. Theriogenology, 62:887-896 https://doi.org/10.1016/j.theriogenology.2003.12.007
  14. Hiroki H, Satoru M, Satoru M, Takahashi H, Yoshikazu S, Naohiko K, Mutsumi I, Ken S, Sadao O and Akira M. 2004b. Genetic Diagnosisof Claudin-16 Deficiency and Sex Determination in Bovine Preimplantation Embryos, 50(6):613-618 https://doi.org/10.1262/jrd.50.613
  15. Jafar SI and Flint APF. 1996. Sex selection in mammals: a review. Theriogenology, 461:91-200
  16. Kobayashi J, Sekimoto A, Uchida H, Wada T, Sasaki K, Sasada H, Umezu M and Sato E. 1998. Rapid detection of male specific DNA sequence in bovine embryos using fluorescence in situ hybridization. Mol. Reprod. Dev., 51:390-394 https://doi.org/10.1002/(SICI)1098-2795(199812)51:4<390::AID-MRD5>3.0.CO;2-F
  17. Lewis IM. 1994. Splitting cattle embryos commercially: the effect of sucrose, embryo stage and the duration between embryo recovery and biopsy. Theriogenology, 41:237 https://doi.org/10.1016/S0093-691X(05)80147-5
  18. Lopes RFF, Forell F, Oliveria ATD and Rodrigues JL. 2001. Splitting and biopsy for bovine embryo sexing under field condition. Theriogenology, 56:1383-1392 https://doi.org/10.1016/S0093-691X(01)00641-0
  19. Machaty Z, Pald A, Csaki T, Varga Z, Kiss I, Barandi Z and Vajta G. 1993. Biosy and sex determination by PCR of IVF bovine embryos. J. Reprod. Fertil., 98:467-470 https://doi.org/10.1530/jrf.0.0980467
  20. Mori Y, Nagamine K, Tomita N and Notomi T. 2001. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem. Biophys. Res. Commun., 289:150-4 https://doi.org/10.1006/bbrc.2001.5921
  21. Nagamine K, Hase T and Notomi T. 2002. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell. Probes, 16:223-229 https://doi.org/10.1006/mcpr.2002.0415
  22. Notomi Y, Okayama H, Masubuchi H, Yonekawa T, Watanabe K and Amino N. 2000. Loopmediated isothermal amplification of DNA. Nucleic Acids Res., 28:63 https://doi.org/10.1093/nar/28.12.e63
  23. Shea BF. 1999. Determining the sex of bovine embryos using polymerase chain reaction results: a six-year retrospective study. Theriogenology, 51:841-854 https://doi.org/10.1016/S0093-691X(99)00030-8
  24. Sohal RS and Allen RG. 1990. Oxidative stress as causal factors in differentiation and aging: a unifying hypothesis. Exp. Gerontology, 25:499-522 https://doi.org/10.1016/0531-5565(90)90017-V
  25. Thibier M and Nibart. 1995. The Sexing of the embryos in the field. Theriogenology, 43:71-80 https://doi.org/10.1016/0093-691X(94)00008-I
  26. Yadav BR, King WA and Betteridge KJ. 1993. Relationship between the completion of the first cleavage and chromosomal complement, sex and developmental rates of bovine embryos generated in vitro. Mol. Reprod. Dev., 36:434-439 https://doi.org/10.1002/mrd.1080360405
  27. White KL, Linder GM, Aderson GB and Bon-Durant RH. 1982. Survival after transfer of sexed mouse embryos exposed to H-Y antisera. Theriogenology, 18:655-662 https://doi.org/10.1016/0093-691X(82)90031-0
  28. Williams TJ. 1986. A technique for sexing mouse embryos by a visual colorimetric assay of the X-linked enzyme, glucose-6-phosphate dehydrogenase. Theriogenology, 25:733-739 https://doi.org/10.1016/0093-691X(86)90131-7
  29. Zhang L, Cui X, Schmitt K, Hubert R, Navid W and Arnheim N. 1992. Whole genome amplification from a single cell: Implication for genetic analysis. Proc. Natl. Acad. Sci. USA, 89:5847-5851