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Co-registration of Multiple Postmortem Brain Slices to Corresponding
MRIs Using Voxel Similarity Measures and Slice-to-Volume
Transformation
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Abstract: New methods to register multiple hemispheric slices of the postmortem brain to anatomically corresponding in-vivo
MR! slices within a 3D volumetric MRI are presented. Gel-embedding and fiducial markers are used to reduce geometrical
distortions in the postmortem brain volume. The registration algorithm relies on a recursive extraction of warped MRI slices from
the reference MRI volume using a modified non-linear polynomial transformation until matching slices are found. Eight different
voxel similarity measures are tested to get the best co-registration cost and the results show that combination of two different
similarity measures shows the best performance. After validating the implementation and approach through simulation studies,
the presented methods are applied to real data. The results demonstrate the feasibility and practicability of the presented co-
registration methods, thus providing a means of MR signal analysis and histological examination of tissue lesions via co-
registered images of postmortem brain slices and their corresponding MRI sections. With this approach, it is possible to
investigate the pathology of a disease through both routinely acquired MRIs and postmortem brain slices, thus improving the

understanding of the pathological substrates and their progression.
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INTRODUCTION

Stereological counting of cells in tissue samples
drawn from postmortem brain slices is commonly
employed in the study of Alzheimer disease (AD) and
subcortical ischemic vascular dementia (SIVD) to
analyze cortical and subcortical changes of
pathological substrates. However, neither cell counting
nor the postmortem brain slices fully reflect changes in
pathology. In clinical evaluations, magnetic resonance
imaging (MRI) is a powerful tool to detect pathological
changes since it provides excellent cortical and
subcortical differentiation and serial MRIs show the
progression of disease in time. Patients with small-
vessel ischemia and AD show white matter lesions
(WML}, hippocampal and cortical atrophy, and lacunar
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infarcts [1]. Some of these lesions cannot be identified
grossly in the postmortem brain, but MRI can detect
significant abnormalities in cortical and subcortical
regions.

Thus, relating corresponding MR slices to given
postmortem brain slices can provide an objective
quantification of pathology through MR signal
characterization, leading to improvements in the
identification and understanding of a specific disease
and its pathological mechanism. This procedure may
also yield additional pathological information not
obtainable from postmortem slices alone. However, co-
registering the postmortem slices to corresponding MR
slices within a premortem volume MRI is a challenging
task for a number of reasons: 1) the time lapse
between the premortem MRI and postmortem brain
creates structural discrepancy. This could be
prevented by a postmortem MRI [2], but it is known
that MR signals decay within the first 90 hours after
death carrying no meaningful clinical information [3],
2) the postmortem brain slices are prone.to geometrical
distortions or multiple deformations due to mechanical
slicing, dehydration, and structural collapse. Such
distortions were investigated via deformation statistics
in [4], and 3) the variability in the thickness and
orientation of postmortem brain slices makes dense
3D-volume reconstruction of the postmortem brain
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difficult. Therefore, previous attempts to correlate MRI
to the postmortem brain have been limited to local
structures of interest imaged and sectioned in the
corresponding planes, not on a slice-to-slice matching
basis [5,6,7].

Although there are various available image
registration techniques based on pixel intensity or
model matching strategies [8,9,10,11,12,13],
application of these existing registration methods to
the postmortem-to-MRI co-registration is limited by
problems of pixel-voxel size matching, scaling, global
and local geometrical distortions, and coarsely
reconstructed postmortem brain volume. For instance,
the intensity-based approaches [9,10,11,12,13]
attempt to match one image volume to the other.
However this requires evenly sliced and orientation-
preserved slices and relatively comparable voxel
characteristics such as PET-PET, MRI-MRI, or PET-
MRI. As for the model-based approaches, they
generally require geometrical representation of
structures based on points, curves, and surfaces.
However, identifying these features requires the
assistance of experienced anatomists and it is often
difficult to identify the exact same features in repeated
trials. Moreover, such structural models are not readily
available for the postmortem brain associated with
different pathological states.

As summarized, co-registration of coarsely sampled
pathological sections to postmortem MRIs is one of the
most difficult and ill-posed problems in registration
since it mainly involves 1) anatomical distortions with
unknown mathematical representations and 2)
handling quite different inter-modality data. To
overcome some of the mentioned difficulties, a very
sophisticated method based on cryo-sectioning [8] has
been used in an attempt to co-register postmortem
slices to MRI. However, the warping mechanism in
their physical continuum model, demands heavy
computation and is time-consuming, preventing their
methodology from general use in studying the
correlation of postmortem slices and MRIs.

By taking a rather pragmatic approach, a set of
standardized procedures has been developed for
handling the postmortem brain via gel-embedding
which produces data with minimal geometrical
distortions suitable for co-registration [14] and an
algorithm to co-register each postmortem brain slice to
its corresponding MR sections on a single whole slice
basis using a ‘slice-to-volume’ mapping and the mean-
squared error (MSE) as a registration cost [15,16]. The
feasibility of co-registration was demonstrated by
showing that the developed approach provides enough
localization for the lesions such as lacunar infarcts,
thus allowing further histological examination as
demonstrated in [17]. '

In this study, an improved strategy in accuracy and
efficiency to register multiple hemispheric postmortem
brain slices to their corresponding MR images is
presented using a  ‘multiple  slice-to-volume’
transformation. The method relies on multiple warped
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MR images derived recursively from a reference MR
volume  using  modified nth-order  non-linear
polynomials. Furthermore, seven different voxel
similarity measures, in addition to the MSE, have been
employed and tested, showing that improvements in
the registration are achieved by augmenting two
similarity measures. After evaluating the registration
algorithms with simulation studies where the "ground
truth" is known, each similarity measure was applied
to real postmortem and MRI data, and evaluated based
on difference images and a count of the mismatched
pixels [10]. The results demonstrate that the presented
approaches including gel-embedding and hemispheric
multiple-slice co-registration improve significantly the
performance of co-registration. Partial preliminary
results in this paper have been presented previously
[18].

MATERIALS AND METHODS

Preprocessing of Postmortem Brain Images

The preparation of postmortem brain slice images
for co-registration is described in [14]. In summary, the
specimens of postmortem brains were fixed in 10%
neutral formalin for at least two weeks, and sectioned
into 28-32 5mm thick coronal slices using a motor-
driven rotary slicer. Each slice was then photographed
digitally and stored in the Kodak PhotoCD RGB color
format at a resolution of 3072x2048, keeping an in-
plane spatial resolution of approximately 0.5mm. The
brain was extracted from the background of the RGB
postmortem photographs by selectively thresholding
RGB intensity values, and converted to gray-scale by
eliminating the hue and saturation while retaining the
luminance information. In handling the postmortem
brain, maintaining a relative distance between two
hemispheres 1is difficult, since only the corpus
callosum connects the hemispheres. Thus, the brain is
separated into hemispheres by slicing through the
corpus callosum and registered each hemisphere
separately. One of the key requirements to register
accurately a postmortem brain slice to its
corresponding MR slice is to minimize local and global
geometrical distortions [16]. To minimize distortions
due to mechanical slicing and dehydration, and to
reduce the variability in the planar thickness and
orientation of the postmortem slices, each hemisphere
was embedded in 3% agar gel and a set of coronal
brain slices was obtained as shown in Fig. 1 (a).
Registration markers, shown as black holes in Fig. 1
{a), were also embedded in the gel and used as control
points to realign the slices to form a 3D volume. Figure
1 (b) shows a set of multiple slices after segmenting the
brain regions from the background and registering all
slices based on the embedded markers via a control
point based registration [19]. More details of
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standardized procedures for gel-embedding and
handling the postmortem brain can be found in [14].

§M83F-00 R

(b)
Fig. 1. (a) A slice of the postmortem brain (right hemisphere)
embedded in agar gel. Registration markers are shown as
biack holes. (b) A set of multiple slices after brain
segmentation and control point-based realignment.

Preprocessing of Pre-mortem MRI

MRI

For reference MR images, three types of MRI scans
were acquired for eight subjects on a GE 1.5T Signa
System: coronal Ti1-weighted, transaxial Proton Density
(PD), and transaxial T2-weighted MRIs respectively. The
Ti-weighted 3D coronal scan was made using a
gradient-echo (SPGR} sequence with TR=24ms,
TE=Sms, flip angle=450, field of view=24x24cm?, 124
slices, slice thickness=1.5mm, and 0.86x0.86 mm? in-
plane resolution. The PD and T2-weighted images were
acquired using a dual-echo turbo spin echo (TSE)
sequence with TR=45ms, TEi1=14ms, TE2=85ms, 51
slices, slice thickness=3mm, and 1.0x1.0mm? in plane
resolution. Due to its higher resolution, coronal Ti-
weighted MR images were used to form the 3D
reference volume.

MR Brain Extraction and Splitting

The Brain Surface Extraction (BSE) algorithm [20],
which extracts the brain regions using a morphological
process, was used to strip off the skull and scalp in MR
images. In addition, the regions of pons and
cerebellum were removed manually from each MR slice,
since these regions were absent in the postmortem
slices. To match the slices of each hemisphere of the
postmortem brain, each extracted MR brain volume
was also cut into two hemispheres through the inter-
hemispheric fissure and stored separately.

Multiple Slice Slice-to-Volume Transformation

In addition to geometrical distortions, a
complicating factor in co-registration is that, unlike
MRI, the photographed side of the postmortem slices
does not reflect voxel information but only surface
optical reflectance variations. Thus direct volume-to-
volume registration between the two modalities is
difficult. To accomplish co-registration within - these
constraints, a slice-to-volume coordinate
transformation for each pixel has been devised
incorporating image warping in the coordinate
transformation using modified general nth-order
polynomials in the following manner [15,16,21]:

U=ay+aji+a,j+ayi’ +agijrasji ot
V=by +bji+byj+byi” +byij+bsj’ +... (1)

w=¢, +c]z'+(:2j+c3i2 +c4ij+c5j2 +...

where (u,v,w)is a new coordinate of a voxel in a 3D
MRI, (i,/) is a pixel coordinate within a postmortem
image, and a; , b, , and ¢; are image coordinate
transformation coefficients.

This can be expressed in a matrix form:

y=Kx - (2)
where yz[u,v, W]T,
ay, a; a, a3 a; as ..
K={by, b by, by by bs .|,

Co € Cy C3 Cy Cs

xz[l i j i ij j2 ]r ,and T denotes a vector
transpose.

Given transformation coefficients K , with an
assumption that each slice is separated with a uniform
inter-slice distance d , multiple slices can be extracted
from a 3D reference image volume V in the following
way:

My = g(f (1, d)V) = g f (K, X.d) V) @)
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where M represents MR slices with k= {l,...,N} and
N being the total number of slices, a function f(e)

the  slice-to-volume transformation, g(e) 3D

interpolation, X a set of pixel coordinates, and Y a
set of voxel coordinates.

The uniform inter-slice distance assumption is valid
only if mechanical slicing produces each slice with a
finite thickness and generates the same global
distortions. In this study, it is assumed that these
criteria are satisfied with the gel-embedding and
mechanical slicing.

Characteristics of Voxel Similarity Measures

A standard approach to estimate the transformation
coefficients including the inter-slice distance is to
minimize the sum of differences between the given
postmortem images and the iteratively extracted and
warped MR images, i.e.,

N
@@;,b;,c;,d" ) =argmin D _e(P, M) )
a;,b;.¢i.d g

where e is a function defining a registration cost, P
a set of postmortem images, and M a set of extracted
MRI slices.

To measure a degree of matching or registration
error between postmortem and MR slices, eight
different similarity functions were tested as possible
cost functions. These most commonly used similarity
functions are based on image intensities, information
measures, and object patterns and have been studied
by Holdon et al. [22]. Here the characteristics of each
measure are briefly reviewed. Their mathematical
definitions are available in [22] and [23].

Mean-Squared Difference (MSD)

It is shown that this similarity measure is optimal
when image intensity transformation for two images is
identical with Gaussian noise {24]. This measure gets
minimized to find a matching slice. In the previous
study, MSD is extensively tested for a single slice
registration [16]. The results demonstrated the
feasibility of the approach and produced reasonable co-
registration with limited success.

Pearson Cross Correlation (PCC)

If the intensity transformation for pixels is linear,
the PCC similarity measure is suggested to be optimal
[24]. PCC has been used extensively in co-registering
serial MRIs by Lemieux et al. [25]. ‘
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Mutual Information‘ (M)

Mutual information measures statistical
dependence between two given images; thus by
maximizing the common amount of information in the
two images we can achieve co-registration. In general,
this measure does not require any assumption or
preprocessing on the pixel intensity of images. 1t is also
considered to be the optimal choice for multimodal
image registration. This measure has been utilized with
a rigid body model in the following studies: Maes et al.
used MI for co-registering MR-MR, MR-CT, and MR-
PET images [26]. Holden at al. used it for co-registering
serial MRIs [22], and Kim et al. for co-registering-
functional MRI-MRI {27]. With a non-rigid model, MI
has been also used in the study by Kim et al. where'an
autoradiograph slice was registered to a reference
image on a slice-by-slice basis [28], and Kjems et al.
used MI to register volume MRI-PET [11] employing a
deformation field model. '

Normalized Mutual Information (NMI)

This similarity measure was suggested by
Studholme [29] and used to register MR images with a
non-rigid model [12] and to register fMRI echo planer
images (EPIs) to anatomical MRIs with a geometric
distortion model [13].

Entropy of Diﬁ’erenbe Image (EDI)

This similarity measure was used to remove motion
between images in digital subtraction angiography {30].
Co-registration is achieved by minimizing the entropy
of difference images.

Ratio Image Uniformity (RIU) and Modified RIU (MRIU)

This similarity measure was proposed by Woods et
al. [9] and its modified version was suggested by .

~ Holden et al. [22]. RIU has been extensively used in

AIR {9] to register MRI-MRI and MRI-PET in 3D. This
measure was also extensively utilized for fMR EPI
image registration for correcting movement related
effects using higher order polynomials [31]."
Minimization of his measure achieves co-registration.

Modiﬁed Pattern Intensity (MPI)

This similarity measure achieves registration by
maximizing the local correlation between selected
regions of the images. Weese et al. used this measure
to register fluoroscopy images to 3D CT images [32].
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Augmented Cost Functions

Although each similarity measure demonstrate its
own reasoning, in general it is difficult to assess which
is the best registration cost. Difficulties in choosing the
best registration cost were also studied in the work of
Freire et al. [33]. In this study, based on experiences
on testing eight similarity measures mentioned above,
a two-step registration approach is devised where
geometrical distortions are corrected in the first step by
co-registering images with MSD or PCC (thus matching
the size and shape of the brain first), and then, using
the pre-estimated transformation parameters, MI or
NMI are used to improve the registration further by
matching internal structures and intensity
distribution: therefore, if PCC is augmented with MI or
NMI, AMI denotes PCC+MI or ANMI denotes PCC+NML.

Registration Algorithms

The multiple slice-to-volume  transformation
translates the coordinates of pixels in the 2D
postmortem slices to voxels in the 3D MRI volume.
Beginning with initial locations within the MRI volume
that produce the minimum difference according to a
given cost function, warped 2D sections lying within
the 3D MRI volume are derived at every iteration until
best-matching MR sections to given postmortem slices
are found by optimizing the registration cost.
Transformation parameters are estimated using a
quasi-Newton-based multidimensional optimization
algorithm with a tri-linear or cubic 3D interpolation
method [34] producing images at the transformed pixel
coordinates. Details of the convergence of the
algorithm to different initial conditions and the
performance of different polynomial order are given in
the previous report [16].

Validation of Registration Algorithms

In order to validate the implementation and
numerical accuracy of the algorithm, computer
simulation studies were carried out using only a
reference MRI volume. With pre-selected ‘true’ 2nd-
order polynomial transformation coefficients, a set of
test MR slices was obtained from the 3D reference MRI
volume. Then using this set as the original, co-
registration was performed with each similarity
measure, resulting in estimated {ransformation
coefficients. The numerical accuracy of each similarity
measure was assessed in terms of the Euclidian
distance between pixel offsets resulting from the
discrepancy between the known and estimated
coefficients.

However, in the case of postmortem slice co-
Registration, the performance of each -measure
depends on the nature of the data and it is not possible
to model all distortion factors in the postmortem slices.
Hence numerical validation is difficult since a “gold
standard” cannot be obtained. To evaluate the
reliability and accuracy of co-registration with real data,
difference images are examined by adopting an index of
voxel mismatch count (VMC) [10] within brain
overlapped regions, where the number of mismatched
pixels is determined by counting pixels whose intensity
in the difference image >20% of the mean intensity as
defined in [10]. In addition to VMC, visual
identification of common anatomical landmarks (e.g.,
anterior commissure, pillars of fornix, perivascular
spaces, and optic chiasm) by experienced anatomists
was used to verify co-registration.

RESULTS

Validation of Algorithms: Simulation Study

The discrepancy of voxel locations due to the
estimated transformation coefficients was computed.
The mean and standard deviation (SD) of voxel
displacements after co-registration using the eight
similarity measures were: MSD=0.0183 (SD=0.0085),
MI=0.0295 (SD=0.0143), NMI=0.0261 (SD=0.0099),
PCC=0.0109 (SD=0.0064), EDI=0.2137 (SD=0.1216),
MPI=0.0069 (SD=0.0037), RIU=1.0082 (SD=0.5606),
and MRIU=36.2281 (SD=8.2171). Except for RIU and
MRIU, the mean voxel displacement error was in the
subvoxel range.

Sensitivity of Cost Functions

. Of the eight subjects entered in this study, two
cases were dropped due to severe distortions in the
outer boundaries of the postmortem slices and in the
internal structures including ventricles and one due to
severe artifacts in MRI. For the remaining five cases, all
eight similarity functions and two augmented cost
functions were investigated, and 5-11 hemispheric
postmortem slices were co-registered to their
corresponding MR slices in a multiple-slice mode using
2nd-order polynomials. Figures 2 (b)-(i) show a typical
set of MR slices registered to the postmortem slice
shown in Fig. 2 (a) with different registration cost
functions. A visual inspection of registered images and
difference images indicates that best co-registration
was obtained with MSD, PCC, and the augmented cost
measures. Overall strong mismatches were noted with
MPI, RIU, and MRIU. The prominent anatomical
landmarks, including the thalamus, hippocampus, and
sub-cortical grey nuclei, appeared to be well registered
in the postmortem and MR images.

Vol.26, No. 4, 2005
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(g) MPI
Fig. 2. Registration results using various similarity measures.
{a) Original postmortem image (b-i) Registered MR slices
obtained through different cost measures.

(h) AMI (i) ANMI

The voxel mismatch counts expressed in percent
changes for all five cases and eight similarity measures
are summarized in Table 1. Voxel mismatch counts in
all cases were normalized by the total number of voxels
of the brain and expressed in percent changes to make
statistical comparisons across slices and subjects.
Although the overall trend in Table 1 suggests that
PCC seems to be the best cost, there was an exception

As for the augmented similarity, the voxel
mismatch counts expressed in percents in Table 2 for
all five cases show a significant reduction compared to
the counts in Table 1 indicating that better match was
found with the augmented cost. Difference images
using the augmented measure showed more uniform
gray patches than the difference images of registered
images using either similarity measure alone.

The bar plot in Fig. 3 shows the mean and
standard deviation of all cases for all similarity
measures including the augmented. Although marginal
reduction in the counts was obtained with the
augmented cost compared to PCC or MSD alone,
significant reduction was obtained compared to those
of MI or NMI. To obtain a measure of the statistical
significance of reduction in the counts for the
augmented costs (i.e., AMI and ANMI), the paired t-test
was performed with one-tail at the 95% confidence
level against other costs [35]. The registration results
using AMI were found to be better significantly than
those of MSD, MI, and NMI (P=0.0086, 0.0027, and
0.0035) as were the results using ANMI (P=0.0068,
0.0021, and 0.0027). However, when the results using
AMI and ANMI were compared with the results using
PCC, the improvement was not statistically significant
(P=0.0825 and 0.0697).

The augmented approach increased the total
computation time by only about 10-15% over that for
MSD or PCC alone. Although not verified in this study,
it has been observed that MI alone requires more
iterations than MSD by a factor of two as shown in [11].
Thus using augmented measures, faster convergence
can be obtained with MSD or PCC, and then fine
adjustment can be done much faster with MI.

Table 2. Normalized Voxel Mismatch Counts for Augmented
Registration Costs

for case Cl. It was found that when there is less .
distortion in the postmortem brain slices such as in Cl1, Mean (Standard Deviation}
similarity measures based on probability density such Case AMI ANMI
as MI, NMI, and EDI performed better than any other c1 20.36(0.94) 19.97(1.37)
rr_lea.suljes. With more dlstm.‘tlon in postrporterp slices, c2 18.25(4.18) 18.08(4.56)
similarity measures depending on voxel intensity such
as MSD and PCC were found to be more sensitive in cs3 13.96(0.04) 13.69(0.18)
matching the location, overall shape, and size of the Cc4 16.05(0.69) 15.86(0.55)
postmortem brain slices, suggesting that these cs 3.28(0.49) 3.34(0.41)
measures are more sensitive for correcting geometrical
distortions. Total 14.45(6.89) 14.24(6.77)
Table 1. Normalized Voxel Mismatch Counts for Eight Different Registration Costs
Mean (Standard Deviation) of (VMC/Total No. Brain Voxels)*100
Case MSD PCC Mi EDIi MPI RIU MRIU
c1 21.99(1.87) | 20.57(0.73) | 20.15(1.70) | 19.96(1.70) | 19.96(1.71) | 39.09(40.61) | 78.81(42.37) | 60.81(45.27)
c2 17.81(4.43) | 17.82(4.73) | 22.73(2.87) | 23.35(6.11) | 27.65(2.78) | 56.97(60.85) | 56.89(60.86) | 56.85(60.97)
c3 30.17(2.40) | 30.73(1.74) | 31.07(1.18) | 31.78(1.79) | 35.01(1.57 N/A* N/A* N/A*
c4 17.67(0.57) | 15.79(1.01) | 18.85(4.88) | 18.93(2.90) | 22.65(0.39) | 16.49(4.14) | 59.75(56.92) | 56.68(61.26)
c5 8.646(3.05) | 3.53(0.52) | 19.23(3.19) | 18.35(7.26) | 22.86(1.53) | 44.63(48.33) | 71.89(48.70) N/A®
Total 18.86(7.46) | 17.04(9.15) | 21.82(4.80) | 21.79(6.00) | 24.54(5.49) | 49.01(42.07) | 74.17(40.34) | 74.64(33.67)

*No covergence was obtained.

J. Biomed. Eng. Res.
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Fig. 3. Plot of normalized voxel mismatch count showing
mean and standard deviation of each similarity cost.

Augmented Cost Functions

To simultaneously co-register multiple hemispheric
postmotem brain slices to their matching MR images, a
stack of images was prepared as discussed in Fig. 1
and all slices within the stack were registered with the
augmented cost measure AMI. Two sets of registered
images from two different subjects are shown in Figs. 4
and 5.

- FENENE

(a) Consecutive Postmortem Brain Slices

SEIFPO0

(b) Registered MR Slices using Augmented Cost

(c) Difference Images

Fig. 4. A set of multiple slice registration results. (a) Seven
consecutive  postmortem  slices used to register
simultaneously. (b) Registered MR slices show good
matching in the size, shape, and internal structures. (c) Gray-
scale in the difference images reveals well-matched and mis-
matched regions.

The first row of Fig. 4 shows seven postmortem
slices of one hemisphere of the postmortem brain, the

second row seven co-registered MR images, and the
last row the difference images. As indicated in the
gray-scale, positive differences are shown brighter and
negative differences darker than the mean gray level
which indicates zero difference, i.e., a good match.

In (Fig. 5, four registered slices out of 10 per
hemisphere are shown. The upper rows of Fig. 5 (a)
and (b) show the postmortem images and the lower
their corresponding registered MRIs. As the registered
images demonstrate, there are strong matches in the
size, shape, and internal structures of the brain. The
anatomical features are well registered in their outer
and inner contours include the ventricles, subcortical
grey nuclei, hippocampus, corpus callosum, and the
choroid plexus within the third ventricle. The mean
value of VMC for all slices was 7.57% (min=4.8% and
max=16.77%).

Registered MRIs

Postmortem images of right hemisphere

Registered MRIs
(b)

Fig. 5. Another set of multiple slice registration results. (a)
The upper row shows four postmortem images of the left
hemisphere of the brain and the lower registered MRIs. (b)
The upper row shows four postmortem images of the right
hemisphere and the lower registered MRls.

Vol.26, No. 4, 2005
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Single-slice vs. Multiple-slice Registration

For the comparison of the co-registration results via
a single-slice mode vs. a multiple-slice mode, eleven
consecutive postmortem brain slices were registered
with two different modes using AMI and 2nd order
polynomials. Three representative slices are shown in
Fig. 6. From the counts of VMC and visual inspection,
it is found that the multiple-slice mode performed
better overall. For example, the 3rd column of Fig. 6
shows where the single-slice mode failed, but the
multiple-slice mode found all correct slices. However, it
is also noticed that when a matching slice was
correctly found with the single-slice mode as shown in
the second column of Fig. 6, it outperformed the
multiple-slice with a lower VMC count. The counts
were 5.76, 3.71, and 22.95% for Fig. 6 (b) left-to-right
respectively, and 5.11, 6.53, and 5.85% for Fig. 6 (c).

(a) Three slices of postmortem brain

(b) Three registered MRIs using AMI via a single-slice
mode

(c) Three registered MRIs using AMI via a multiple-slice
mode

Fig. 6. Results of co-registering postmortem slices via single-
slice and multiple-siice mode. (a) Three postmortem slices.
(b) Registered MR slices via a single-slice mode. (c) Three
registered MR slices via a multiple-slice mode.

J. Biomed. Eng. Res.

Postmortem Slices to Longitudinal MRIs

To check the reliability of the registration approach
in longitudinal studies, it was also attempted to
register postmortem slices to their corresponding MR
slices in three longitudinal MR scans performed four
years apart. Co-registration was done with a multiple-
slice mode, 2nd-order transformation, and AMI as the
cost function. The results are presented in Fig. 7. The
first row shows four postmortem slices out of twelve,
and subsequent rows show their registered MRIs in the
longitudinal scans. Visual inspection shows close
matches of anatomical structures and the mean VMC
values for each longitudinal scan was 9.91%, 10.17%,
and 13.85% respectively.

Postrmortem Slices.

Reristered MRIs.

>

Resistered MRIs.

Fig. 7. Co-registration results of postmortem slices to three
longitudinal MRIs. Four consecutive postmortem slices are
shown in the first row. The following each row shows the
registered MR images in three longitudinal MR scans.

Lesion Mapping in the Registered Pair of
Postmortem and MRI Slices

One of the main goals of developing the co-registration
methodology is to map lesions either found in
postmortem slices or MRIs to their corresponding
images. In order to demonstrate that the presented
methodology provides enough accuracy of lesion
mapping for further investigation, first, a lesion is
identified in MRI and mapped into the postmortem
slice as shown in Fig. 8. This capability allows the
localization of ROIs for histological tissue examination
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or MR signal analysis of tissues as demonstrated in the
separate studies [14,17].

(o)

Fig. 8. An example of lesion mapping. (@) A pair of
. postmortem slices (top) and registered MRIs (bottom). (b)
Lesion identified in the registered MRI (top) is mapped into
the postmortem slice (bottom).

DISCUSSION

Although pathological information at the cellular
level can be derived from postmortem brain tissues,
the natural progression of disease can be monitored
more efficiently through longitudinal MR scans. The
progression of a disease can then be compared to the
pathology of brain tissue by co-registering postmortem
slices to their corresponding MR slices. The purpose of
this work is to provide a methodology for such co-

registration between given postmortem slices and MRIs.

In fact, knowledge of MR signal changes of pathological
substrates may add significant information about the
disease to the histological analysis of tissue itself.

The significance of the presented approach lies in
its practicability, cost-effectiveness, and minimal
expert human intervention. The postmortem brain
preparation in gel can be done easily without
sophisticated apparatus. There is no need for high-
resolution postmortem image volume and no landmark
localization or structural model generation is required.
Once postmortem and MR images are pre-processed no
human intervention is needed to find the matching
slices. In general ROIs only reside in a few postmortem
slices. Thus only the desired slices need to be
registered using a multiple-slice mode. The single-slice
mode allows an option of co-registration when accurate
realignment into a stack is not possible.

A similar approach to the presented method was
independently reported by Kim et al. [27]. In their work,
individual slices were registered to an anatomical
volume via the “map-slice-to-volume” approach and the
use of mutual information to correct motion in fMRI
with a rigid body model. However, the presented
method is different in its use of nonlinear global
correction afforded by the nonlinear polynomial
transformation and inter-slice gap handling. Also the
sensitivity of various voxel similarity measures were
studied and it is found that correlation similarity is
more sensitive than mutual information and that the
combinatory use of similarity measures is better than a
single measure.

It is generally understood that mutual information
is the optimal choice for registering multi-modal
medical images, especially when images reflect
different contrasts. However the results in this study
suggest that the correlation measure could be the
optimal choice to register postmortem photographs to
MRI. This observation could be explained by: (a)
Intensity  transformation  between  postmortem
photographs and MRI has a linear relationship, thus
producing better results as suggested by Viola [24].

-More studies are underway to study a larger group of

cases for a firmer conclusion, and (b) it is shown that
the cost curve for the global maximum for mutual
information is much narrower than that of any other
cost, and convergence for global maximum heavily
depends on the image interpolation and optimization
methods ([26]. This may explain the reduced
performance of Ml in this study. The use of simulated
annealing optimization procedure [34] is being
currently investigated to overcome the limitations of
interpolation and optimization.

In this study, mainly the 2nd-order polynomial
transformation was tested allowing the following
transformations in 3D: translation, rotation, scaling,
skewness, and perspective [36]. Although the previous
investigation wusing the 3rd-order [21] showed a
significant improvement in registration, it is not clear
that further expansion of polynomial order would
produce better co-registration. However, as
demonstrated in  this study, gel-embedding
significantly reduces local distortions and the 2nd-order
compensation in the multiple slice mode does seem to
be enough to obtain reasonable co-registration. In the
case of MRI-MRI registration where structural
deformation is not significant, Woods et al. showed
marginal improvement of registration with higher
number of coefficients [9]. Since higher order of
polynomials complicates parameter estimation and
demands more computation time, the relation of model
order versus registration performance must be
investigated. i

Although VMC is adapted as an indicator of image
matching, it should be acknowledged that it might not
reflect correct degree of co-registration and has
limitations, since VMC is not a bias-free arbiter of each
co-registration cost. Due to the nature of problem,
neither voxel or pixel intensity difference measures nor
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visual inspection alone reflects the degree of correct co-
registration. However, it is believed that the validation
approaches should reflect some degree of quantitative
and qualitative measures of co-registration. A search
for quantitatively accurate measures of co-registration
is underway.

Although the merit of non-linear polynomial
transformation is its ability to perform spatial
transformation with a  specified order, the
transformation is global and local refining registration
mechanism might be more critical to improve the
registration accuracy of local regions. To improve local
registration at reasonable cost, the possibility of
utilizing a local window surrounding a specific
anatomical region as attempted in [37] using local
Gaussian windows should be investigated.

CONCLUSION

In this work, a much improved method is presented
relying on a slice-to-volume transformation using nth-
order polynomials to co-register multiple postmortem
brain slices to their corresponding MR slices within a
reference MR volume. The characteristics of eight
different similarity measures were tested to achieve co-
registration. The results demonstrate that the
combined use of PCC and MI produces better results
than any one of the measures alone. The results were
supported by visual anatomical comparisons,
difference between the postmortem and registered MR
images, and the counts of mismatched voxels. With
this approach, MR characteristics of a disease can be
correlated to the pathology of the disease, thus
increasing the clinical significance of MR scans. The
co-registration approach used in this study is efficient
and provides enough accuracy for histological
examination. Also the technique is cost-effective since
only those postmortem slices containing the region of
interest can be registered, and can be applied
automatically with minimum human intervention (i.e.,
no anatomical templates or structure representations
are required).
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