Abstract
This paper is concerned with the development of a micro tensile testing machine for optically functional materials such as single or poly crystalline silicon and nickel film. This micro tensile tester has been developed for testing various types of materials and dimensions. PZT type actuation is utilized for precise displacement control. The specifications of the PZT actuated micro tensile testers developed are as follows: the volumetric size of the tester is desktop type of 710mm' 200mm' 270mm; the maximum load capacity and the load resolution in this system are IKgf and 0.0152mgf respectively and; the full stroke and the stoke resolution of the PZT actuator are $1000{\mu}m$ and 10nm respectively. Special automatic specimen installing and setting equipment is applied in order to prevent unexpected deformation and misalignment of specimens during handling of specimens for testing. Nonlinearity of the PZT actuator is compensated to linear control input by an inverse compensation method that is proposed in this paper. The strain data is obtained by ISDG method that uses the laser interference phenomenon. To test the reliance of this micro tensile testing machine, a $200{\mu}m$ thickness nickel thin film and SCS (Single Crystalline Silicon) material that is made with the MEMS fabrication process are used.