Development and Characterization of RNA Aptamers for Phosphorylated Amino Acids

인산화 형태의 아미노산들에 대한 엡타머의 개발과 특성연구

  • Cho Suhyung (Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University) ;
  • Kim Byung-Gee (School of Chemical and Biological Engineering, Seoul National University)
  • 조수형 (서울대학교 생물화학공학 협동과정) ;
  • 김병기 (서울대학교 화학생물공학부)
  • Published : 2005.04.01

Abstract

Phosphorylation of amino acid residues in proteins, plays a major role in biological mechanism. Phosphorylation acts as a process regulating the protein activity in variable pathways such as metabolism, signal transduction and cell division. Therefore the development of ligands for phosphoamino acids are an important work for protein analysis and proteomics studies. In this study, RNA aptamers for o-phosphoserine, o-phosphotyrosine and o-phosphotyrosine which appears frequently in nature were developed by in vitro evolution method. We could obtain similar sequences from random RNAs of 40 mer by SELEX method through 10 cycles. As result, the aptamers for o-phosphoserine and o-phosphothreonine among phosphoamino acids aptamers showed high affinity of Kd=2.60 nM and 2.65 nM for their target molecules, respectively. In addition, these aptamers could be confirmed the high selectivity for their target.

인산화 과정은 serine, threonine, tyrosine에서 발생하는 생화학적 반응으로, 본 연구에서는 다양한 응용의 잠재능력이 있는 phosphoserine, phosphothreonine, phosphotyrosine에 대한 엡타머를 개발하였다. 우선 in vitro selection 방법에 의해 combinatorial chemistry로부터 얻어진 RNA library로부터 이들 phosphoamino acids와 친화도를 가지고 있는 엡타머를 찾아낼 수 있었다. 총 10번의 일련 과정을 통해 phosphoserine에 대해서 2.6 nM의 친화도를 가지고 있는 엡타머를 (SeA-06), phosphothreonine에 대해서는 2.7nM의 친화도를 가지고 있는 엡타머 (TrA-18)를 찾아낼 수 있었고, 이들의 RNA 2차 구조를 각각 예측하여 보았다. 그러나 phosphotyrosine의 경우 짧은 길이의 엡타머가 selection됨으로 내부적으로 구조를 가지는 엡타머는 얻을 수 없었다. o-phosphoserine에 대한 항체가 기존에 보고가 되었으나 유사한 구조를 지닌 o-phosphothreonine에도 비슷한 활성을 보여 이들을 구분할 수 있는 리간드를 찾기 힘들었으나, 본 연구에서는 엡타머를 사용한 특이성 조사에서도 서로를 극명하게 구별할 수 있음을 확인할 수 있었다. 이와 같이 발굴된 엡타머를 사용하여 biochip이나 Proteomics 분석 도구의 응용에 큰 기대효과를 제공할 수 있을 것이라 사료된다.

Keywords

References

  1. Hunter, T. (1998), The Croonian Lecture 1997, The phosphorylation of proteins on tyrosine: its rol in cell growth and disease. Philosophical Transactions: Biological Sciences, Royal Society, London, pp.583-605
  2. Tuerk, C. and Gold, L. (1990), Systematic evolution of ligands by exponential enrichment : RNA ligands to bacteriophage T4 DNA polymerase, Science 249, 505-510 https://doi.org/10.1126/science.2200121
  3. Ellington, A. D. and Szostak, J. W. (1990), In vitro selection of RNA molecules that bind specific ligands, Nature 346, 818-822 https://doi.org/10.1038/346818a0
  4. Ciesiolka, J., Gorski, J., and Yarns, M. (1995), Selection of an RNA Domain that Binds $Zn^{+2}$, RNA 1, 538-550
  5. Sassanfar, M. and Szostak, J. W. (1993), An RNA Motif that Binds ATP, Nature 364, 550-553 https://doi.org/10.1038/364550a0
  6. Huizenga, D. E. and Szostak, J. W. (1995), A DNA Aptamer that binds adenosine and ATP, Biochemistry 34, 656-665 https://doi.org/10.1021/bi00002a033
  7. Yang, Q., Goldstein, I. J., Mei, H. Y., and Engelke, D. R. (1998), DNA Ligands that Bind Tightly and Selectively to Cellobiose, Proc. Natl. Acad. Sci. USA 95, 5462-5467
  8. Famuiok, M. and Huttenhofer, A. (1996), In vitro selection analysis of neomycin binding RNAs with a mutagenized pool of variants of the 16S rRNA decoding region, Biochemistry 35, 4265-4270 https://doi.org/10.1021/bi952479r
  9. Mannironi, A., DiNardo, P., and Fruscoloni, G. P. Tocchini-Valentini (1997), In Vitro Selection of Dopamine RNA Ligands, Biochemistry 36, 9726-9734 https://doi.org/10.1021/bi9700633
  10. Wilson, C, Nix, J., and Szostak, J. (1998), Functional Requirements for specific Ligand Recognition by a Biotin-binding RNA Pseudoknot, Biochemistry 37, 14410-14419 https://doi.org/10.1021/bi981371j
  11. Nieuwlandt, D., Wecker, M., and Gold, L. (1995), In Vitro Selection of RNA Ligands to Substance P., Biochemistry 34, 5651-5659 https://doi.org/10.1021/bi00016a041
  12. Kraus, E., James, W., and Barclay, A. N. (1998), Novel RNA Ligands Able to Bind CD4 Antigen and Inhibit CD4C T Lymphocyte Function, J. Immunol. 160, 5209-5212
  13. Romig, T. S., Bell C, and Drolet, D. W. (1999), Aptamer affInity chromatography: combinatorial chemistry applied to protein purification, J. Chromatography B 731, 275-284
  14. Bill, E., Lutz, U., Karlsson, B.. M., Sparrman, M., and Allgaier, H. (1995), Optimization of protein G chromatography for biopharmaceutical monoclonal antibodies, J. Mol. Recognit. 8, 90-94 https://doi.org/10.1002/jmr.300080116
  15. Lee, S. W. and Sullenger, B. (1997), Isolation of a nucleaseresistant decoy RNA that can protect human acetylcholine receptors from myasthenic antibodies, Nat. Biotechnol. 15, 41-45 https://doi.org/10.1038/nbt0197-41
  16. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997), The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools, Nucleic Acids Research 24, 4876-4882
  17. Jaeger, J., Turner, D., and Zuker, M. (1989), Improved predictions of secondary structures for RNA, Proc. Natl. Acad. Sci. USA 86, 7706-7710