Production of Chiral Epoxides: Epoxide Hydrolase-catalyzed Enantioselective Hydrolysis

  • Choi, Won-Jae (Institute of Chemical and Engineering Sciences) ;
  • Choi, Cha-Yong (School of Chemical Engineering, College of Engineering, Seoul National University)
  • 발행 : 2005.06.01

초록

Chiral epoxides are highly valuable intermediates, used for the synthesis of pharmaceutical drugs and agrochemicals. They have broad scope of market demand because of their applications. A major challenge in modern organic chemistry is to generate such compounds in high yields, with high stereo- and regio-selectivities. Epoxide hydrolases (EH) are promising biocatalysts for the preparation of chiral epoxides and vicinal diols. They exhibit high enantioselectivity for their substrates, and can be effectively used in the resolution of racemic epoxides through enantioselective hydrolysis. The selective hydrolysis of a racemic epoxide can produce both the corresponding diols and the unreacted epoxides with high enantiomeric excess (ee) value. The potential of microbial EH to produce chiral epoxides and vicinal diol has prompted researchers to explore their use in the synthesis of epoxides and diols with high ee values.

키워드

참고문헌

  1. Smith, J. G. (1984) Synthetically useful reactions of epoxides. Synthesis 629-656 https://doi.org/10.1055/s-1984-30921
  2. Finney, N. S. (1998) Enantioselective epoxide hydrolysis: Catalysis involving microbes, mammals and metals. Chem. Biol. 5: R73-R79 https://doi.org/10.1016/S1074-5521(98)90630-5
  3. Furuhashi, K. (1992) Chirality in Industry. pp. 167-186. John Wiley & Sons Ltd, USA
  4. Takagi, M., N. Uemura, and K. Furuhashi (1990) Microbial transformation processes of aliphatic-hydrocarbons. Ann. N. Y. Acad. Sci. 613: 697-701 https://doi.org/10.1111/j.1749-6632.1990.tb18248.x
  5. Takahashi, O., J. Umezawa, K. Furuhashi, and M. Takagi (1989) Stereocontrol of a tertiary hydroxyl group via microbial epoxidation, a facile synthesis of Prostaglandin $\omega$- chains. Tetrahedron Lett. 30: 1583-1584 https://doi.org/10.1016/S0040-4039(00)99526-1
  6. Johnson, R. A. and K. B. Sharpless (1993) Catalytic Asymmetric Epoxidation of Allylic Alcohols. In Catalytic Asymmetric Synthesis. Ojima. 1st ed., pp. 103-158. VCH, NY, USA
  7. Jacobsen, E. N. (1995) Asymmetric catalytic epoxidation of unfunctionalized olefins. In Catalytic Asymmetric Synthesis. Ojima. 1st ed., pp. 159-202. VCH, NY, USA
  8. Wang, Z.-X., Y. Tu, M. Frohn, J. R. Zhang, and Y. Shi (1997) An efficient catalytic asymmetric epoxidation method. J. Am. Chem. Soc. 119: 11224-11235 https://doi.org/10.1021/ja972272g
  9. Tokunaga, M., J. F. Larrow, F. Kakiuchi, and E. N. Jacobsen (1997) Asymmetric catalysis with water: Efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis. Science 277: 936-938 https://doi.org/10.1126/science.277.5328.936
  10. Besse, P. and H. Veschambre (1994) Chemical and biological synthesis of chiral epoxides. Tetrahedron 50: 8885-8927 https://doi.org/10.1016/S0040-4020(01)85362-X
  11. Archelas, A. and R. Furstoss (1999) Biocatalytic approaches for the synthesis of enantiopure epoxides. Top. Curr. Chem. 200: 159-191 https://doi.org/10.1007/3-540-68116-7_6
  12. Armstrong, R. N. (1999) Kinetic and chemical mechanism of epoxide hydrolase. Drug Metab. Rev. 31: 71-86 https://doi.org/10.1081/DMR-100101908
  13. Ollis, D. L., E. Cheah, M. Cygler, B. Dijkstra, F. Frolow, S. M. Franken, M. Harel, S. J. Remington, I. Silman, J. Schrag, J. L. Sussman, K. H. G. Verschueren, and A. Goldman (1992) The $\alpha$/$\beta$ hydrolase fold. Protein Eng. 5: 197-211 https://doi.org/10.1093/protein/5.3.197
  14. Knehr, M., H. Thomas, M. Arand, T. Gebel, H. D. Zeller, and F. Oesch (1993) Isolation and characterization of a cDNA encoding rat liver cytosolic epoxide hydrolase and its functional expression in Escherichia coli. J. Biol. Chem. 268: 17623-17627
  15. Jassen, D. B., F. Fries, J. van der Ploeg, B. Kazemier, P. Terpstra, and B. Witholt (1989) Cloning of 1,2-dichloroethane degradation genes of Xanthobacter autotrophicus GJ10 and expression and sequencing of the dhlA gene. J. Bacteriol. 171: 6791-6799
  16. Arand, M., D. F. Grant, J. K. Beetham, T. Friedberg, F. Oesch, and B. D. Hammock (1994) Sequence similarity of mammalian epoxide hydrolases to the bacterial haloalkane dehalogenase and other related proteins. FEBS Lett. 338: 251-256 https://doi.org/10.1016/0014-5793(94)80278-5
  17. Verschueren, K. H. G., F. Seljee, H. J. Rozeboom, K. H. Kalk, and B. W. Dijkstra (1993) Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase. Nature 363: 693-698 https://doi.org/10.1038/363693a0
  18. Arand, M., H. Wagner, and F. Oesch (1996) $Asp^{333}$, $Asp^{495}$ and $His^{523}$ from the catalytic triad of rat soluble epoxide hydrolase. J. Biol. Chem. 271: 4223-4229 https://doi.org/10.1074/jbc.271.8.4223
  19. Nardin, M., I. S. Ridder, H. J. Rozeboom, K. H. Kalk, R. Rink, D. B. Janssen, and B. W. Dijkstra (1999) The X-ray structure of epoxide hydrolase from Agrobacterium radiobacter AD1. J. Biol. Chem. 274: 14579-14586 https://doi.org/10.1074/jbc.274.21.14579
  20. Lacourciere, G. M. and Richard N. A. (1993) The catalytic mechanism of microsomal epoxide hydrolase involves an ester intermediate. J. Am. Chem. Soc. 115: 10466-10467 https://doi.org/10.1021/ja00075a115
  21. Hammock, B. D., F. Pinot, J. K. Beetham, D. F. Grant, M. E. Arand, and F. Oesch (1994) Isolation of a putative hydroxyacyl enzyme intermediate of an epoxide hydrolase. Biochem. Biophy. Res. Comm. 198: 850-856 https://doi.org/10.1006/bbrc.1994.1121
  22. Rink, R. and D. B. Janssen (1998) Kinetic mechanism of the enantioselective conversion of styrene oxide by epoxide hydrolase from Agrobacterium radiobacter AD1. Biochemistry 37: 18119-18127 https://doi.org/10.1021/bi9817257
  23. DuBois, G. C., E. Appella, W. Levin, A. Y. H. Lu, and D. M. Jerina (1978) Hepatic microsomal epoxide hydrase. Involvement of a histidine at the active site suggests a nucleophilic mechanism. J. Biol. Chem. 253: 2932-2939
  24. Moussou, P., A. Archelas, J. Baratti, and R. Furstoss (1998) Microbiological transformations. 38. Clues to the involvement of a general acid activation during hydrolysis of para-substituted styrene oxides by a soluble epoxide hydrolase from Syncephalastrum racemosum. J. Org. Chem. 63: 3532-3537 https://doi.org/10.1021/jo9714371
  25. van der Werf, M. J., J. A. M. de Bont, and H. J. Swarts (1999) Acid-catalyzed enzymatic hydrolysis of 1-methylcyclohexene oxide. Tetrahedron Asymmetry 10: 4225-4230 https://doi.org/10.1016/S0957-4166(99)00449-8
  26. Choi, W. J., C. Y. Choi, J. A. M. de Bont, and C. A. G. M. Weijers (1999) Resolution of 1,2-epoxyhexane by Rhodotorula glutinis using a two-phase membrane bioreactor. Appl. Microbiol. Biotechnol. 53: 7-11 https://doi.org/10.1007/s002530051606
  27. Choi, W. J., C. Y. Choi, J. A. M. de Bont, and C. A. G. M. Weijers (2000) Continuous production of enantiopure 1,2-epoxyhexane by yeast epoxide hydrolase in a twophase membrane bioreactor. Appl. Microbiol. Biotechnol. 54: 641-646 https://doi.org/10.1007/s002530000451
  28. Genzel, Y., A. Archelas, J. H. Lutje Spelberg, D. B. Janssen, and R. Furstoss (2001) Microbiological transformations. Part 48: Enantioselective biohydrolysis of 2-, 3- and 4- pyridyloxirane at high substrate concentration using Agrobacterium radiobacter AD1 epoxide hydrolase and its Tyr215Phe mutant. Tetrahedron 57: 2775-2779 https://doi.org/10.1016/S0040-4020(01)00146-6
  29. Lutje S., J. H., R. Rink, A. Archelas, R. Furstoss, and D. B. Janssen (2002) Biocatalytic potential of the epoxide hydrolase from Agrobacterium radiobacter AD1 and a mutant with enhanced enantioselectivity. Adv. Synth. Catal. 344: 980-985 https://doi.org/10.1002/1615-4169(200210)344:9<980::AID-ADSC980>3.0.CO;2-A
  30. Reetz, M. T., C. Torre, A. Eipper, R. Lohmer, M. Hermes, B. Brunner, A. Maichele, M. Bocola, M. Arand, A. Cronin, A., et al. (2004) Enhancing enantioselectivity of an epoxide hydrolase by directed evolution. Org. Lett. 6: 177-180 https://doi.org/10.1021/ol035898m
  31. Bert van L., J. H. L. Spelberg, J. Kingma, T. Sonke, M. G. Wubbolts, and D. B. Janssen (2004) Directed evolution of epoxide hydrolase from A. radiobacter toward higher enantioselectivity by error-prone PCR and DNA shuffling. Chem. Biol. 11: 981-990 https://doi.org/10.1016/j.chembiol.2004.04.019
  32. Kasai, N., T. Suzuki, and Y. Furukawa (1998) Chiral C3 epoxides and halohydrins: Their preparation and synthetic application. J. Mol. Catal. B: Enzymatic 4: 237-252 https://doi.org/10.1016/S1381-1177(97)00034-9
  33. Orru, R. V. A., A. Archelas, R. Furstoss, and K. Faber (1999) Epoxide hydrolases and their synthetic application. Adv. Bioichem. Eng./Biotechnol. 63: 145-167 https://doi.org/10.1007/3-540-69791-8
  34. C. A. G. M. Weijers (1997) Enantioselective hydrolysis of aryl, alicyclic and aliphatic epoxides by Rhodotorula glutinis. Tetrahedron Asymmetry 8: 639-647 https://doi.org/10.1016/S0957-4166(97)00012-8
  35. Weijers, C. A. G. M., A. L. Botes, M. S. van Dyk, and J. A. M. de Bont (1998) Enantioselective hydrolysis of unbranched aliphatic 1,2-epoxides by Rhodotorula glutinis. Tetrahedron Asymmetry 9: 467-473 https://doi.org/10.1016/S0957-4166(97)00639-3
  36. Botes, A. L., C. A. G. M. Weijers, P. J. Botes, and M. S. van Dyk (1999) Enantioselectivities of yeast epoxide hydrolases for 1,2-epoxides. Tetrahedron Asymmetry 10: 3327-3336 https://doi.org/10.1016/S0957-4166(99)00355-9
  37. Botes, A. L., C. A. G. M. Weijers, and M. S. van Dyk (1998) Biocatalytic resolution of 1,2-epoxyoctane using resting cells of different yeast strains with novel epoxide hydrolase activities. Biotechnol. Lett. 20: 421-426 https://doi.org/10.1023/A:1005395817739
  38. Moussou, P., A. Archelas, and R. Furstoss (1998) Microbiological transformations. 40. Use of fungal epoxide hydrolases for the synthesis of enantiopure alkyl epoxides. Tetrahedron 54: 1563-1572 https://doi.org/10.1016/S0040-4020(97)10394-5
  39. Botes, A. L., J. A. Steenkamp, M. Z. Letloenyane, and M. S. van Dyk (1998) Epoxide hydrolase activity of Chryseomonas luteola for the asymmetric hydrolysis of aliphatic mono-substituted epoxides. Biotechnol. Lett. 20: 427-430 https://doi.org/10.1023/A:1005347901809
  40. Osprian, I., W. Kroutil, M. Mischitz, and K. Faber (1997) Biocatalytic resolution of 2-methyl-2-(aryl)alkyloxiranes using novel bacterial epoxide hydrolases. Tetrahedron Asymmetry 8: 65-71 https://doi.org/10.1016/S0957-4166(96)00493-4
  41. Orru, R. V. A., W. Kroutil, and K. Faber (1997) Deracemization of ($\pm$)-2,2-disubstituted epoxides via enantioconvergent chemoenzymatic hydrolysis using Nocardia EH1 epoxide hydrolase and sulfuric acid. Tetrahedron Lett. 38: 1753-1754 https://doi.org/10.1016/S0040-4039(97)00201-3
  42. Mischitz, M., W. Kroutil, U. Wandel, and K. Faber (1995) Asymmetric microbial hydrolysis of epoxides. Tetrahedron Asymmetry 6: 1261-1272 https://doi.org/10.1016/0957-4166(95)00158-L
  43. Weijers, C. A. G. M., A. de Haan, and J. A. M. de Bont (1988) Chiral resolution of 2,3-epoxyalkanes by Xanthobacter Py2. Appl. Microbiol. Biotechnol. 27: 337-340 https://doi.org/10.1007/BF00251764
  44. Kroutil, W., Y. Genzel, M. Pietzsch, C. Syldatk, and K. Faber (1998) Purification and characterization of a highly selective epoxide hydrolase from Nocardia sp. EH1. J. Biotechnol. 61: 143-150 https://doi.org/10.1016/S0168-1656(98)00025-X
  45. Moussou, P., A. Archelas, J. Baratti, and R. Furstoss (1998) Microbiological transformations. Part 39: Determination of the regioselectivity occurring during oxirane ring opening by epoxide hydrolases: A theoretical analysis and a new method for its determination. Tetrahedron Asymmetry 9: 1539-1547 https://doi.org/10.1016/S0957-4166(98)00122-0
  46. Chiappe, C., A. Cordoni, G. L. Moro, and C. D. Palese (1998) Deracemization of ($\pm$)-cis-dialkyl substituted oxides via enantioconvergent hydrolysis catalysed by microsomal epoxide hydrolase. Tetrahedron Asymmetry 9: 341-350 https://doi.org/10.1016/S0957-4166(97)00630-7
  47. Choi, W. J., E. C. Huh, H. J. Park, E. Y. Lee, and C. Y. Choi (1998) Kinetic resolution for optically active epoxides by microbial enantioselective hydrolysis. Biotechnol. Techniques 12: 225-228 https://doi.org/10.1023/A:1008825508904
  48. Machado, S. S., U. Wandel, A. J. J. Straathof, J. A. Jongejan, and J. A. Duine (1996) Production of (R)-glycidol by Acetobacter pasteurianus. International Conference on Biotechnology for Industrial Production of Fine Chemicals. Zermatt, Switzerland
  49. Choi, W. J., E. Y. Lee, S. J. Yoon, S. T. Yang, and C. Y. Choi (1999) Biocatalytic production of chiral epichlorohydrin in organic solvents. J. Biosci. Bioeng. 88: 339-341 https://doi.org/10.1016/S1389-1723(00)80022-5
  50. Orru, R. V. A., S. F. Mayer, W. Kroutil, and K. Faber (1998) Chemoenzymatic deracemization of ($\pm$)-2,2-disubstituted oxiranes. Tetrahedron 54: 859-874 https://doi.org/10.1016/S0040-4020(97)10338-6
  51. Chiappe, C. and C. D. Palese (1999) Stereo-and enantioselectivity of the soluble epoxide hydrolase-catalysed hydrolysis of ($\pm$)-cis-dialkyl substituted oxiranes. Tetrahedron 55: 11589-11594 https://doi.org/10.1016/S0040-4020(99)00657-2
  52. Chen, X. J., A. Archelas, and R. Furstoss (1993) Microbiological transformations. 27. The first examples for preparative- scale enantioselective or diastereoselective epoxide hydrolases using microorganisms. An unequivocal access to all four bisabolol stereoisomers. J. Org. Chem. 58: 5528-5532 https://doi.org/10.1021/jo00072a043
  53. Archer, I. V. J., D. J. Leak, and D. A. Widdowson (1996) Chemoenzymatic resolution and deracemisation of ($\pm$)-1- methyl-1,2-epoxycyclohexane : The synthesis of (1S,2S)- 1-methylcyclohexane-1,2-diol. Tetrahedron Lett. 37: 8819-8822 https://doi.org/10.1016/S0040-4039(96)01998-3
  54. van der Werf, M. J., R. V. A. Orru, K. M. Overkamp, H. J. Swarts, I. Osprian, A. Steinreiber, J. A. M. de Bont, and K. Faber (1999) Substrate specificity and stereospecificity of limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis DCL14; An enzyme showing sequential and enantioconvergent substrate conversion. Appl. Microbiol. Biotechnol. 52: 380-385 https://doi.org/10.1007/s002530051535
  55. Archelas, A. (1998) Fungal epoxide hydrolases: New tools for the synthesis of enantiopure epoxides and diols. J. Mol. Catal. B Enzymatic 5: 79-85 https://doi.org/10.1016/S1381-1177(98)00011-3
  56. Spelberg, J. H. L., R. Rink, R. M. Kellogg, and D. B. Janssen (1998) Enantioselectivity of a recombinant epoxide hydrolase from Agrobacterium radiobacter. Tetrahedron Asymmetry 9: 459-466 https://doi.org/10.1016/S0957-4166(98)00003-2
  57. Pedragosa-Moreau, S., C. Morisseau, J. Zylber, A. Archelas, J. Baratti, and R. Furstoss (1996) Microbial transformations. 33. Fungal epoxide hydrolases applied to the synthesis of enantiopure para-substituted styrene oxides. A mechanistic approach. J. Org. Chem. 61: 7402-7407 https://doi.org/10.1021/jo960558i
  58. Pedragosa-Moreau, S., A. Archelas, and R. Furstoss (1993) Microbiological transformations. 28. Enantiocomplementary epoxide hydrolases as a preparative access to both enantiomers of styrene oxide. J. Org. Chem. 58: 5533-5536 https://doi.org/10.1021/jo00072a044
  59. Nellaiah, H., C. Morisseau, A. Archelas, R. Furstoss, and J. C. Baratti (1996) Enantioselective hydrolysis of p-nitrostyrene oxide by an epoxide hydrolase preparation from Aspergillus niger. Biotechnol. Bioeng. 49: 70-77 https://doi.org/10.1002/(SICI)1097-0290(19960105)49:1<70::AID-BIT9>3.0.CO;2-Q
  60. Pedragosa-Moreau, S., C. Morisseau, J. Baratti, J. Zylber, A. Archelas, and R. Furstoss (1997) Microbiological transformations. 37. An enantioconvergent synthesis of the $\beta$- blocker (R)-$Nifenalol^{\circledR}$ using a combined chemoenzymatic approach. Tetrahedron 53: 9707-9714 https://doi.org/10.1016/S0040-4020(97)00639-X
  61. Hao J. and Z.-Y. Li (2002) Enantioselective hydrolysis of o-nitrostyrene oxide by whole cells of Aspergillus niger CGMCC 0496. Biosci. Biotechnol. Biochem. 66: 1123- 1125 https://doi.org/10.1271/bbb.66.1123
  62. Xu, Y., J.-H. J. P. Xu, L. Zhao, and S.-L. Zhang (2004) Biocatalytic resolution of nitro-substituted phenoxypropylene oxides with Trichosporon loubierii epoxide hydrolase and prediction of their enantiopurity variation with reaction time. J. Mol. Catalysis B Enzymatic 27: 155-159 https://doi.org/10.1016/j.molcatb.2003.11.006
  63. Monfort N., A. Archelas, and R. Furstoss (2004) Enzymatic transformations. Part 55: Highly productive epoxide hydrolase catalysed resolution of an azole antifungal key synthon. Tetrahedron 60: 601-605 https://doi.org/10.1016/j.tet.2003.10.119
  64. Pedragosa-Moreau, S., A. Archelas, and R. Furstoss (1996) Microbiological transformations 32: Use of epoxide hydrolase mediated biohydrolysis as a way to enantiopure epoxides and vicinal diols: Application to substituted styrene oxide derivatives. Tetrahedron 52: 4593-4606 https://doi.org/10.1016/0040-4020(96)00135-4
  65. Cleij, M., A. Archelas, and R. Furstoss (1998) Microbiological transfromations. Part 42: A two-liquid-phase preparation scale process for an epoxide hydrolase catalysed resolution of para-bromo-$\alpha$-methyl styrene oxide. Occurrence of a surprising enantioselectivity enhancement. Tetrahedron Asymmetry 9: 1839-1842 https://doi.org/10.1016/S0957-4166(98)00180-3
  66. Li, C., Q. Liu, X. Song, D. Ding, A. Ji, and Y. Qu (2003) Epoxide hydrolase-catalyzed resolution of ethyl 3-phenylglycidate using whole cells of Pseudomonas sp., Biotech. Lett. 25: 2113-2116 https://doi.org/10.1023/B:BILE.0000007078.83362.a0
  67. Zhang, J., J. Reddy, C. Roberge, C. Senanayake, R. Greasham, and M. Chartrain (1995) Chiral bio-resolution of racemic indene oxide by fungal epoxide hydrolases. J. Ferment. Bioeng. 80: 244-246 https://doi.org/10.1016/0922-338X(95)90823-I
  68. Goswami, A., M. J. Totleben, A. K. Singh, and R. N. Patel (1999) Stereospecific enzymatic hydrolysis of racemic epoxide: A process for making chiral epoxide. Tetrahedron Asymmetry 10: 3167-3175 https://doi.org/10.1016/S0957-4166(99)00326-2
  69. Misawa, E., K. C. Chan, C. K. Chion, I. V. Archer, M. P. Woodland, N.-Y. Zhou, S. F. Carter, D. A. Widdowson, and D. J. Leak (1998) Characterization of a catalytic epoxide hydrolase from a Corynebacterium sp. Eur. J. Biochem. 253: 173-183 https://doi.org/10.1046/j.1432-1327.1998.2530173.x
  70. Jacobs, M. H. J., A. J. van den Wijngaard, M. Pentenga, and D. B. Janssen (1991) Characterization of the epoxide hydrolase from an epichlorohydrin-degrading Pseudomonas sp. Eur. J. Biochem. 202: 1217-1222 https://doi.org/10.1111/j.1432-1033.1991.tb16493.x
  71. Rink, R., M. Fennema, M. Smids, U. Dehmel, and D. B. Janssen (1997) Primary structure and catalytic mechanism of the epoxide hydrolase from Agrobacterium radiobacter AD1. J. Biol. Chem. 272: 14650-14657 https://doi.org/10.1074/jbc.272.23.14650
  72. A. L. Botes (1999) Affinity purification and characterization of a yeast epoxide hydrolase. Biotechnol. Lett. 21: 511-517 https://doi.org/10.1023/A:1005500407152
  73. Botes, A. L., D. Litthauer, A. van Tonder, and M. S. van Dyk (1999) Physico-chemical properties of the epoxide hydrolase from Rhodosporidium toruloides. Biotechnol. Lett. 21: 1137-1144 https://doi.org/10.1023/A:1005630309102
  74. Kronenburg, N. A. E., M. Mutter, H. Visser, J. A. M. de Bont, and C. A. G. M. Weijers (1999) Purification of an epoxide hydrolase from Rhodotorula glutinis. Biotechnol. Lett. 21: 519-524 https://doi.org/10.1023/A:1005556508061
  75. Visser, H., S. Vreugdenhil, J. A. M. de Bont, and J. C. Verdoes (2000) Cloning and characterization of an epoxide hydrolase-encoding gene from Rhodotorula glutinis. Appl. Microbiol. Biotechnol. 53: 415-419 https://doi.org/10.1007/s002530051635
  76. Mischitz, M., K. Faber, and A. Willets (1995) Isolation of a highly enantioselective epoxide hydrolase from Rhodococcus sp. NCIMB 11216. Biotechnol. Lett. 17: 893-898 https://doi.org/10.1007/BF00127422
  77. van der Werf , J. Mariet, K. M. Overkamp, and J. A. M. de Bont (1998) Limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis DCL14 belongs to a novel class of epoxide hydrolases. J. Bacteriol. 180: 5052-5057
  78. Barbirato, F., J. C. Verdoes, J. A. M. de Bont, and M. J. van der Werf (1998) The Rhodococcus erythropolis DCL14 limonene-1,2-epoxide hydrolase gene encodes an enzyme belonging to a novel class of epoxide hydrolases. FEBS Lett. 438: 293-296 https://doi.org/10.1016/S0014-5793(98)01322-2
  79. Visser, H., J. A. M. de Bont, and J. C. Verdoes (1999) Isolation and characterization of the epoxide hydrolase encoding gene from Xanthophyllomyces dendrorhous. Appl. Environ. Microbiol. 65: 5459-5463
  80. Arand, M., H. Hemmer, H. Dürk, J. Baratti, A. Archelas, R. Furstoss, and F. Oesch (1999) Cloning and molecular characterization of a soluble epoxide hydrolase from Aspergillus niger that is related to mammalian microsomal epoxide hydrolase. Biochem. J. 344: 273-280 https://doi.org/10.1042/0264-6021:3440273
  81. Kim, H. S., J. H. Lee, S. H. Park, and E. Y. Lee (2004) Biocatalytic preparation of chiral epichlorohydrins using recombinant Pichia pastoris expressing epoxide hydrolase of Rhodotorula glutinis. Biotechnol. Bioprocess Eng. 9: 62-64 https://doi.org/10.1007/BF02949324
  82. Lee, J. W., E. J. Lee, S. S. Yoo, S. H. Park, H. S. Kim, and E. Y. Lee (2003) Enantioselective hydrolysis of racemic styrene oxide by epoxide hydrolase of Rhodosporidium kratochvilovae SYU-08. Biotechnol. Bioprocess Eng. 8: 306-308 https://doi.org/10.1007/BF02949223