Cooling Performance of a Microchannel Heat Sink with Nanofluids

나노유체를 냉각유체로 사용하는 마이크로채널 히트 싱크의 냉각효율

  • Jang, Seok-Pil (School of Aerospace and Mechanical Engineering, Hankuk Aviation University)
  • 장석필 (한국항공대학교 항공우주 및 기계공학부)
  • Published : 2005.09.01

Abstract

In this paper, the cooling performance of a microchannel heat sink with nano-particle-fluid suspensions ('nanofluids') is numerically investigated. By using theoretical models of thermal conductivity and viscosity of nanofluids that account for the fundamental role of Brownian motion respectively, we investigate the temperature contours and thermal resistance of a microchannel heat sink with nanofluids such as 6nm copper-in-water and 2nm diamond-in-water. The results show that a microchannel heat sink with nanofluids has high cooling performance compared with the cooling performance of that with water, the classical coolant. Nanofluids reduce both the thermal resistance and the temperature difference between the heated microchannel wall and the coolant.

Keywords

References

  1. Lee, S., Choi, S. U. S. and Eastman, J. A, 1999, Measuring thermal conductivity of fluids containing oxide nanoparticles, ASME J. Heat Transfer, Vol. 121, pp.280-289 https://doi.org/10.1115/1.2825978
  2. Eastman, J. A., Choi, S. U. S., Yu, W. and Thompson, L. J., 2001, Anomalously increased effective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett., Vol. 78, pp. 718-720 https://doi.org/10.1063/1.1341218
  3. Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E. and Grulke, E. A., 2001, Anomalous thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett., Vol. 79, pp. 2252-2254 https://doi.org/10.1063/1.1408272
  4. Das, S. K., Putra, N., Thiesem, P. and Roetzel, W., 2003, Thermal conductivities of naked and monolayer protected metal nanoparticle base nanofluids: Manifestation of anomalous enhancement and chemical effects, Appl. Phys. Lett., Vol. 83, pp.2931-2933 https://doi.org/10.1063/1.1602578
  5. Jang, S. P. and Choi, S. U. S., 2004, Role of Brownian motion in the enhanced thermal conductivity of nanofluids, Appl. Phys. Lett., Vol. 84, pp.4316-4318 https://doi.org/10.1063/1.1756684
  6. You, S. M., Kim, J. H. and Kim, K. H., 2003, Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer, Appl. Phys. Lett., Vol. 83, pp.3374-3376 https://doi.org/10.1063/1.1619206
  7. Jang, S. P., 2004, Thermal conductivitis of nanofluids, Trans. KSME B, Vol. 28, pp. 968-975 https://doi.org/10.3795/KSME-B.2004.28.8.968
  8. Einstein, A., 1956, Investigation on the theory of Brownian movement, Dover, New York
  9. Smith, J. M. and Van Ness, H. C., 1987, Introduction to chemical engineering thermo dynamics, McGraw Hill, New York
  10. Jang, S. P. and Choi, S. U. S., 2004, Free convection in rectangular cavity (Benard Convection) with nanofluids, IMECE2004-61054, Anaheim, USA
  11. Wang, X., Xu, X. and Choi, S. U. S., 1999, Thermal conductivity of nanoparticle-fluid mixtures, J. Thermophysics and Heat Transfer, Vol. 13, pp.474-480 https://doi.org/10.2514/2.6486
  12. Davalos-Orozco, L. A. and Del Castillo, L. F., 2002, Hydrodynamic behavior of suspensions of polar particles: in Encyclopedia of surface and colloid science, Marcel Dekker, New York, pp. 2375-2396
  13. Min, J. Y., Jang, S. P. and Kim, S. J., 2004, Effect of tip clearance on the cooling performance of a microchannel heat sink, Int. J. Heat Mass Transfer, Vol. 47, pp. 1099-1103 https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.020