DOI QR코드

DOI QR Code

One-step Least Squares Fitting of Variogram

  • Published : 2005.08.01

Abstract

In this paper, we propose the one-step least squares method based on the squared differences to estimate the parameters of the variogram used for spatial data modelling, and discuss its asymptotic efficiency. The proposed method does not require to specify lags of interest and partition lags, so that we can delete the subjectiveness and ambiguity originated from the lag selection in estimating spatial dependence.

Keywords

References

  1. Cressie, N. (1985). Fitting variogram models by weighted least squares, Journal of the International Association for Mathematical Geology, Vol. 17, 563-586 https://doi.org/10.1007/BF01032109
  2. Cressie, N. (1993). Statistics for Spatial Data, revised edition, Wiley
  3. Cressie, N. and Hawkins, D. M. (1980). Robust estimation of the variogram, I, Journal of the International Association for Mathematical Geology, Vol. 12, 115-125 https://doi.org/10.1007/BF01035243
  4. Genton, M.G. (1998). Highly robust variogram estimation, Mathematical Geology, Vol. 30, 213-221 https://doi.org/10.1023/A:1021728614555
  5. Genton, M.G. (1998). Variogram Fitting by Generalized Least Squares Using an Explicit Formula for the Covariance Structure, Mathematical Geology, Vol. 30, 323-345 https://doi.org/10.1023/A:1021733006262
  6. Lahiri, S.N, Lee, Y.D. and Cressie, N. (2002). On asymptotic distribution and asymptotic efficiency of least squares estimators of spatial variogram parameters, Journal of Statistical Planning and Irference, Vol. 103, 65-85 https://doi.org/10.1016/S0378-3758(01)00198-7
  7. Lee, Y.D. and Lahiri, S.N. (2002). Least Squares Variogram fitting by Spatial Subsampling, The Journal of the Royal Statistical Society, Vol. B64, 837-854 https://doi.org/10.1111/1467-9868.00364
  8. Zhang, X., van Eijkeren, J. and Heemink, A. (1995). On the weighted least-squares method for fitting a semivariogram model, Computers & Geosciences, Vol. 21, 605-608 https://doi.org/10.1016/0098-3004(94)00099-G