참고문헌
- Berger, J.O. and Bernardo, J.M.(1989). Estimating a product of means : Bayesian analysis with reference priors. Journal of the American Statistical Association, 84, 200-207 https://doi.org/10.2307/2289864
- Berger, J.O. and Bernardo, J.M.(1992). On the Development of Reference Priors(with discussion). Bayesian Statistics 4(Bernardo, J.M. et al., eds.), Oxford University Press, Oxford, 35-60
- Bernardo, J.M. (1979). Reference posterior distributions for Bayesian inference. Journal of Royal Statistical Society (Ser.B), 113-147
- Datta, G.S. and Ghosh, J,K. (1995). On priors providing frequentist validity for Bayesian inference. Biometrika. 82, 37-45 https://doi.org/10.1093/biomet/82.1.37
- Donner, A. and Bull .S, (1983). Inferences concerning a common intraclass correlation coefficient. Biometrics, 39, 771-775 https://doi.org/10.2307/2531107
- Donner, A. and Koval, J.J. (1980). The Estimation of Intraclass Correlation in the Analysis of Family Data. Biometrics, 19-25
- Kim, D.H., Kang, S.G., and Lee, W.D. (2001). Noninformative Priors for Intraclass Correlation Coefficient in Familial Data. Far East Journal of Theoretical Statistical, 5, 51-65
- Peers, H.W. (1965). On Confidence Sets and Bayesian Probability Points in the Case of Several Parameters. Journal of Royal Statistical Society (Ser B), 27, 9-16
- Rao, C.R. (973). Linear Statistical Inference and Its Applications. New York: Wiley
- Rosner, B., Donner, A. and Honnekens, C.H. (1977). Estimation of intraclass correlations from familial data. Applied Statistics, 26, No.2, 179-187 https://doi.org/10.2307/2347026
- Srivastava, M.S. (1984). Estimation of intraclass correlation in familial data. Biometrica, 71, 177-185 https://doi.org/10.1093/biomet/71.1.177
- Srivastava, M.S. and Kaptapa, R.S. (1986). Comparison of estimators of interclass and intraclass correlations from familial data. Canadian Journal of Statistics, 14, 29-42 https://doi.org/10.2307/3315034
- Young, D.J. and Bhandary, M. (1998). Test for equality of intraclass correlation coefficients under unequal family sizes. Biometrics, 54, 1363-1373 https://doi.org/10.2307/2533663