Sequencing and Comparative Analysis of napA Genes from Helicobacter pylori Strains Associated with Iron-Deficiency Anemia

  • Published : 2005.08.01

Abstract

H. pylori is known to cause severe gastric diseases, including peptic ulcers and gastric cancers, and a link has also been suggested with iron-deficiency anemia (IDA). However, little is known about the pathogenesis of H. pylori-associated IDA. In the present study, to determine whether H. pylori strains are correlated with the prevalence of IDA, we analyzed and compared the sequences of the napA genes encoding a bacterioferritin-like protein in H. pylori strains. A total of 20 H. pylori strains were isolated from antral biopsies of patients with and without IDA, and the napA genes amplified from the genomic DNA were sequenced. A comparison of the deduced amino acid sequences for NapA revealed two sites with major variations. At residue 70, five out of the 12 non-IDA strains ($41.7\%$) contained serine, while only one of the 8 IDA strains ($12.5\%$) contained serine, indicating a significantly higher frequency of serine in the non-IDA strains. In addition, the NapA proteins from all 17 Western strains available on Web sites were found to contain serine residues at this position. Meanwhile, the other major variation was located at residue 73, where all eight IDA strains ($100\%$) contained leucine, while this was only true for eight of the 12 non-IDA strains ($66.7\%$). Therefore, these results indicated that the strains within each group were more genetically related to each other than to strains in the other group. When the expression level of the napA genes in the H. pylori strains was measured using RT-PCR, no significant difference was observed between the two groups, suggesting a similar intensity for the inflammatory responses induced by the NapA protein among the strains. Consequently, when taken together, the present data suggest that the occurrence of H. pylori-associated IDA may be partly determined by the infecting H. pylori strain, and the non-IDA strains are more closely related to Western strains than the IDA strains.

Keywords

References

  1. Annibale, B., M. Marignani, B. Monarca, G. Antonelli, A. Marcheggiano, G. Martino, F. Mandelli, R. Caprilli, and G. Delle Fave. 1999. Reversal of iron deficiency anemia after Helicobacter pylori eradication in patients with asymptomatic gastritis. Ann. Intern. Med. 131: 668-672
  2. Atherton, J. C., P. Cao, R. M. Peek, M. K. Tummuru, M. J. Blaser, and T. L. Cover. 1995. Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori: Association of specific vacA types with cytotoxin production and peptic ulceration. J. Biol. Chem. 270: 17771-17777 https://doi.org/10.1074/jbc.270.30.17771
  3. Barabino, A. 2002. Helicobacter pylori-related iron deficiency anemia: A review. Helicobacter 7: 71-75 https://doi.org/10.1046/j.1083-4389.2002.00073.x
  4. Choe, Y. H., P. S. Kim, D. H. Lee, H. K. Kim, Y. S. Kim, Y. W. Shin, T. S. Hwang, H. J. Kim, S. U. Song, and M. S. Choi. 2002. Diverse vacA allelic types of Helicobacter pylori in Korea and clinical correlation. Yonsei Med. J. 43: 351-356 https://doi.org/10.3349/ymj.2002.43.3.351
  5. Choe, Y. H., S. K. Kim, B. K. Son, D. H. Lee, Y. C. Hong, and S. H. Pai. 1999. Randomized placebo-controlled trial of Helicobacter pylori eradication for iron-deficiency anemia in preadolescent children and adolescents. Helicobacter 4: 135-139 https://doi.org/10.1046/j.1523-5378.1999.98066.x
  6. Choe, Y. H., J. E. Lee, and S. K. Kim. 2000. Effect of Helicobacter pylori eradication on sideropenic refractory anaemia in adolescent girls with Helicobacter pylori infection. Acta Paediatr. 89: 154-157 https://doi.org/10.1080/080352500750028753
  7. Choe, Y. H., Y. J. Oh, N. G. Lee, I. Imoto, Y. Adachi, N. Toyoda, and E. C. Gabazza. 2003. Lactoferrin sequestration and its contribution to iron-deficiency anemia in Helicobacter pylori-infected gastric mucosa. J. Gastroenterol. Hepatol. 18: 980-985 https://doi.org/10.1046/j.1440-1746.2003.03098.x
  8. Cooksley, C., P. J. Jenks, A. Green, A. Cockayne, R. P. Logan, and K. R. Hardie. 2003. NapA protects Helicobacter pylori from oxidative stress damage, and its production is influenced by the ferric uptake regulator. Med. Microbiol. 52: 461-469 https://doi.org/10.1099/jmm.0.05070-0
  9. Corpet, F. 1988. Multiple sequence alignment with hierarchical clustering. Nucl. Acids Res. 16: 10881-10890 https://doi.org/10.1093/nar/16.22.10881
  10. Dunn, B. E., H. Cohen, and M. J. Blaser. 1997. Helicobacter pylori. Clin. Microbiol. Rev. 10: 720- 741
  11. Evans, D. J. Jr., D. G. Evans, T. Takemura, H. Nakano, H. C. Lampert, D. Y. Graham, D. N. Granger, and P. R. Kvietys. 1995. Characterization of a Helicobacter pylori neutrophilactivating protein. Infect. Immun. 63: 2213-2220
  12. Husson, M. O., D. Legrand, G. Spik, and H. Leclerc. 1993. Iron acquisition by Helicobacter pylori: Importance of human lactoferrin. Infect. Immun. 61: 2694-2697
  13. Kawata, H., A. Ito, K. Kodama, S. Honda, T. Fujioka, and M. Nasu. 1996. Association between napA genotypes of Helicobacter pylori and severity of gastritis. Gastroenterol. 110 (suppl. 1): A152
  14. Leakey, A., J. La Brooy, and R. Hirst. 2000. The ability of Helicobacter pylori to activate neutrophils is determined by factors other than H pylori neutrophils-activating protein. J. Infect. Dis. 182: 1749-1755 https://doi.org/10.1086/317611
  15. Looker, A. C., P. R. Dallman, M. D. Carroll, E. W. Gunter, and C. L. Johnson. 1997. Prevalence of iron deficiency in the United States. JAMA 277: 973-976 https://doi.org/10.1001/jama.277.12.973
  16. Miehlke, S., C. Kirsch, K. Agha-Amiri, J. Gunther, N. Lehn, P. Malfertheiner, M. Stolte, G Ehninger, and E. Bayerdorffer. 2000. The Helicobacter pylori vacA s1, m1 genotype and cagA is associated with gastric carcinoma in Germany. Int. J. Cancer 87: 322-327 https://doi.org/10.1002/1097-0215(20000801)87:3<322::AID-IJC3>3.0.CO;2-M
  17. Milman, N., S. Rosenstock, L. Andersen, J. Jorgensen, and O. Bonnevie. 1998. Serum ferritin, hemoglobin, and Helicobacter pylori infection: A seroepidemiologic survey comprising 2794 Danish adults. Gastroenterology 115: 268-274 https://doi.org/10.1016/S0016-5085(98)70192-1
  18. Montemurro, P., H. Nishioka, W. G Dundon, M. de Bernard, G Del Giudice, R. Rappuo]j, and C. Montecucco. 2002. The neutrophil-activating protein (RP-NAP) of Helicobacter pylori is a potent stimulant of mast cells. Eur. J. Immunol. 32: 671-676 https://doi.org/10.1002/1521-4141(200203)32:3<671::AID-IMMU671>3.3.CO;2-X
  19. Peek, R. M., S. A. Thompson, J. P. Donahue, K. T. Tham, J. C. Atherton, M. J. Blaser, and G G Miller. 1998. Adherence to gastric epithelial cells induces expression of a Helicobacter pylori gene, iceA, that is associated with clinical outcome. Proc. Assoc. Am. Physicians 110: 531-544
  20. Satin, B., G. Del Giudice, V. Della Bianca, S. Dusi, C. Laudanna, F. Tonello, D. Kelleher, R. Rappuoli, C. Montecucco, and F. Rossi. 2000. The neutrophil-activating protein (HP-NAP) of Helicobacter pylori is a protective antigen and a major virulence factor. J. Exp. Med. 91: 1467-1476
  21. Tonello, F., W. G. Dundon, B. Satin, M. Molinari, G. Tognon, G. Grandi, G. Del Giudice, R. Rappuoli, and C. Montecucco. 1999. The Helicobacter pylori neutrophil-activating protein is an iron-binding protein with dodecameric structure. Mol. Microbiol. 34: 238-246 https://doi.org/10.1046/j.1365-2958.1999.01584.x
  22. Zanotti, G., E. Papinutto, W. Dundon, R. Battistutta, M. Seveso, G. Giudice, R. Rappuoli, and C. Montecucco. 2002. Structure of the neutrophil-activating protein from Helicobacter pylori.J. Mol. Biol. 323: 125-130 https://doi.org/10.1016/S0022-2836(02)00879-3