Enrichment of Ammonia-Oxidizing Bacteria for Efficient Nitrification of Wastewater

  • KIM WON-KYOUNG (Department of Environmental Engineering and Biotechnology, Myongji University) ;
  • CUI RONG (Department of Environmental Engineering and Biotechnology, Myongji University) ;
  • JAHNG DEOKJIN (Department of Environmental Engineering and Biotechnology, Myongji University)
  • Published : 2005.08.01

Abstract

Ammonia-oxidizing bacteria (AOB) were enriched by repeating fed-batch cultivations in an AOB-selective medium of activated sludges from a domestic wastewater treatment plant. Enriched culture showed strong capabilities of ammonia oxidation [0.810 mg $NH_4^+$-N/mg mixed liquor suspended solids (MLSS)$\cdot$day] as well as $NO_x^-$-N production (0.617 mg $NO_x^-$-N/ mg MLSS$\cdot$day). Degree of enrichment was examined through fluorescent in situ hybridization (FISH) analyses using an AOB-specific Cy3-labeled oligonucleotide probe (NSOl90) and terminal-restriction fragment length polymorphism (T-RFLP) analyses. FISH analyses confirmed that the fraction of AOB among 4',6-diamidino-2-phenylindole (DAPI)-stained cells increased from about less than $0.001\%$ to approximately $42\%$ after enrichment of AOB, and T-RFLP analyses showed that bacterial community became simpler as enrichment was continued. When the enriched culture of AOB was added (150 mg/l as dry suspended solid) to the normal activated sludge (3,000 mg/l as dry suspended solid), nitrification efficiencies were improved from 0.020 mg $NO_x^-$-N/mg MLSS$\cdot$day to 0.041 mg $NO_x^-$-N/mg MLSS$\cdot$day in a synthetic wastewater and also from 0.0007 mg $NO_x^-$-N/mg MLSS$\cdot$day to 0.0918 mg $NO_x^-$-N/mg MLSS$\cdot$day in a real domestic wastewater. Therefore, it is expected that this enrichment method could be used for improving efficiency of nitrification in wastewater treatment plants.

Keywords

References

  1. Ahn, I.-S., M. W. Kim, H.-J. La, K.-M. Chio, and J.-C. Kwon. 2003. Bacterial community composition of activated sludge relative to type and efficiency of municipal wastewater treatment plants. J. Microbiol. Biotechnol. 13: 15-21
  2. Alfreider, A., J. Pemthaler, R. Amann, B. Sattler, F.-A. Glockner, A. Wille, and R. Psenner. 1996. Community analysis of the bacterial assemblages in the winter cover and pelagic layers of a high mountain lake by in situ hybridization. Appl. Environ. Microbiol. 62: 2138-2144
  3. American Public Health Association, American Water Works Association, and Water Environment Federation. 1998. Standard Methods for the Examination of Water and Wastewater; 20th Ed. Washington, DC, U.S.A
  4. Aoi, Y, T. Miyoshi, T. Okamoto, S. Tsuneda, A. Hirata, A. Kitayama, and T. Nagamune. 2000. Microbial ecology of nitrifying bacteria in wastewater treatment process examined by fluorescence in situ hybridization. J. Biosci. Bioeng. 90: 234-240 https://doi.org/10.1016/S1389-1723(00)80075-4
  5. Bae, J.-W., J.-J. Kim, C. O. Jeon, K. Kim, J. J. Song, S.-G. Lee, H. Poo, C.-M. Jung, Y-H. Park, and M.-H. Sung. 2003. Application of denaturing gradient gel electrophoresis to estimate the diversity of commensal thermophiles. J. Microbiol. Biotechnol. 13: 1008-1012
  6. Burrell, P. C., C. M. Phalen, and T. A. Hovanec. 2001. Identification of bacteria responsible for ammonia oxidation in fresh aquaria. Appl. Environ. Microbiol. 67: 5791-5800 https://doi.org/10.1128/AEM.67.12.5791-5800.2001
  7. Chang, Y.-C., K. Jung, and Y-S. Yoo. 2003. Anaerobic degradation of cis-1,2-dichloroethylene by cultures enriched from a landfill leachate sediment. J. Microbiol. Biotechnol. 13: 366-372
  8. Dunbar, J., L. O. Ticknor, and C. R. Kuske. 2000. Assessment of microbial diversity in four Southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis. Appl. Environ. Microbiol. 66: 2943-2950 https://doi.org/10.1128/AEM.66.7.2943-2950.2000
  9. EI-Fantroussi, S. 2000. Enrichment and molecular characterization of a bacterial culture that degrades methoxymethyl urea herbicides and their aniline derivatives. Appl. Environ. Microbiol. 66: 5110-5115 https://doi.org/10.1128/AEM.66.12.5110-5115.2000
  10. Eriksson, M., E. Sodersten, Z. Yu, Ci Dalhammar, and W. W. Mohn. 2003. Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from northern soils. Appl. Environ. Microbiol. 69: 275-284 https://doi.org/10.1128/AEM.69.1.275-284.2003
  11. Grommen, R., J. V. Hauteghem, M. V. Wambeke, and W. Verstraete. 2002. An improved nitrifying enrichment to remove ammonium and nitrite from freshwater aquaria systems. Aquaculture 211: 115-124 https://doi.org/10.1016/S0044-8486(01)00883-3
  12. Gupta, A. B. and S. K. Gupta. 2001. Simultaneous carbon and nitrogen removal from high strength domestic wastewater in an aerobic RBC biofilm. Water Res. 35: 1714-1722 https://doi.org/10.1016/S0043-1354(00)00442-5
  13. Halling-Sorensen, B. and S. E. Jorgensen. 1993. The removal of Nitrogen Compounds from Wastewater, pp. 55-118. Elsevier, Amsterdam, The Netherlands
  14. Haner, A., P. Hohener, and J. Zeyer. 1995. Degradation of pxylene by a denitrifying enrichment culture. Appl. Environ. Microbiol. 61: 3185-3188
  15. Hatayama, R., K. Chiba, K. Noda, R. Takahashi, T. Kanehira, K. Serata, M. Shinohara, and T. Tokuyama. 1999. Characteristics of a high-concentration-ammonium sulfate-requiring ammonia oxidizing bacterium isolated from deodorization plants of chicken farms. J. Biosci. Bioeng. 87: 245-249 https://doi.org/10.1016/S1389-1723(99)89022-7
  16. Hiraishi, A., M. Iwasaki, and H. Shinjo. 2000. Terminal restriction pattern analysis of 16S rRNA genes for the characterization of bacterial communities of activated sludge. J. Biosci. Bioeng. 90: 148-146
  17. Jeon, C. O., S. H. Woo, and J. M. Park. 2003. Microbial communities of activated sludge perfonning enhanced biological phosphorus removal in a sequencing batch reactor supplied with glucose. J. Microbiol. Biotechnol. 13: 385-393
  18. Kamer, M. and J. A. Fuhnnan. 1997. Detennination of active marine bacterioplankton: A comparison of universal 16S rRNA probes, autoradiography, and nucleoid staining. Appl. Environ. Microbial. 63: 1208-1213
  19. Kawaharasaki, M., H. Tanaka, T. Kanagawa, and K. Nakamura. 1999. In situ identification of polyphosphateaccumulating bacteria in activated sludge by dual staining with rRNA-targeted oligonucleotide probes and 4',6-_ diamidino-2-phenylindole (DAPI) at a polyphosphate-probing concentration. Water Res. 33: 257-265 https://doi.org/10.1016/S0043-1354(98)00183-3
  20. Keener, W. K., S. A. Russell, and D. J. Arp. 1998. Kinetic characterization of the inactivation of ammonia monooxygenase in Nitrosamanas europaea by alkyne, aniline and cyclopropane derivatives. Biochim. Biaphys. Acta 1388: 373-385 https://doi.org/10.1016/S0167-4838(98)00188-5
  21. Kim, B.-S., R-M. Oh, H. Kang, S.-S. Park, and J. Chun. 2004. Remarkable bacterial diversity in the tidal flat sediment as revealed by 16S rDNA analysis. J. Microbiol. Biotechnol. 14: 205-211
  22. Lee, J. W., E. S. Choi, K. J. Oil, H. W. Lee, S. H. Lee, S. Y. Lee, and Y. K. Park. 2001 Removal behavior of biological nitrogen and phosphorus, and prediction of microbial community composition with its function, in an anaerobicanoxic system from weak sewage. J. Microbiol. Biotechnol. 11: 994-1001
  23. Lipponen, M. T. T., M. H. Suutari, and P. J. Martikainen. 2002. Occurrence of nitrifYing bacteria and nitrification in Finnish drinking water distribution systems. Water Res. 36: 4319-4329 https://doi.org/10.1016/S0043-1354(02)00169-0
  24. Liu, W.- T., T. L. Marsh, H. Cheng, and L. J. Forney. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63: 4516-4522
  25. Manz, W., U. Szewzyk, P. Ericsson, R. Amann, K.-H. Schleifer, and T.-A. Stenstrom. 1993. In situ indentification of bacteria in drinking water and adjoining biofilms by hybridization with 16S and 23S rRNA-directed fluorescent oligonucleotide probes. Appl. Environ. Microbiol. 59: 2293-2298
  26. Martinez-Murcia, A. J., S. G. Acinas, and F. RodriguezValera. 1995. Evaluation of prokaryotic diversity by restrictase digestion of 16S rDNA directly amplified from hypersaline environments. FEMS Microbial. Ecol. 17: 247-256 https://doi.org/10.1111/j.1574-6941.1995.tb00149.x
  27. Miller, D. N., J. E. Bryant, E. L. Madsen, and W. C. Ghiorse. 1999. Evaluation and optimization of DNA extraction and purification procedures for soil sedimentation samples. Appl. Environ. Microbial. 65: 4715-4724
  28. Neufeld, J. D. and R. Knowles. 1999. Inhibition ofnitrifiers and methanotrophs from an agricultural humisol by allylsufide and its implications for environmental studies. Appl. Environ. Microbial. 65: 2461-2465
  29. Park, J. B., H. W. Lee, S.-Y. Lee, J. O. Lee, J. S. Bang, E. S. Choi, D. H. Park, and Y. K. Park. 2002. Microbial community analysis of 5-stage biological nutrient removal process with step feed system. J. Microbiol. Biotechnol. 12: 929-935
  30. Princic, A, J. Mahne, F. Megusar, E. A. Paul, and J. M. Tiedje. 1998. Effects of pH, oxygen, ammonium concentration on the community structure of nitrifYing bacteria from wastewater. Appl. Environ. Microbiol. 64: 3584-3590
  31. Randall, C. W., J. L. Barnard, H. D. Stensel, and P. E. 1992. Design and Retrofit of Wastewater Treatment Plants for Biological Nutrient Removal, pp. 25-56. Technomic Publishing Company, Inc., U.S.A
  32. Ravenschlag, K., K. Sahm, and R. Amann. 2001. Quantitative molecular analysis of the microbial community in marine arctic sediments (Svalbard). Appl. Environ. Microbiol. 67: 387-395 https://doi.org/10.1128/AEM.67.1.387-395.2001
  33. Atlas, R. M. 1993. Microbiological Media, pp. 675. CRC Press, Inc., U.S.A
  34. Townshend, A., P. Worsfold, S. Haswell, H. Werner, and L Wilson. 1995. Encyclopedia of Analytical Science. Academic Press Inc., U.S.A
  35. Wagner, M., G. Rath, R. Amanm, H.-P. Koops, and K.-H. Schleifer. 1995. In situ identification of ammonia oxidizing bacteria. System. Appl. Microbiol. 18: 251-264 https://doi.org/10.1016/S0723-2020(11)80396-6