Establishment of a Micro-Particle Bombardment Transformation System for Dunaliella salina

  • Tan Congping (Institute of Oceanology, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences) ;
  • Qin Song (Institute of Oceanology, Chinese Academy of Sciences) ;
  • Zhang Qun (Institute of Oceanology, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences) ;
  • Jiang Peng (Institute of Oceanology, Chinese Academy of Sciences) ;
  • Zhao Fangqing (Institute of Oceanology, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences)
  • 발행 : 2005.08.01

초록

In this study, we chronicle the establishment of a novel transformation system for the unicellular marine green alga, Dunaliella salina. We introduced the CaMV35S promoter-GUS construct into D. salina with a PDS1000/He micro-particle bombardment system. Forty eight h after transformation, via histochemical staining, we observed the transient expression of GUS in D. salina cells which had been bombarded under rupture-disc pressures of 450 psi and 900 psi. We observed no GUS activity in either the negative or the blank controls. Our findings indicated that the micro-particle bombardment method constituted a feasible approach to the genetic transformation of D. salina. We also conducted tests of the cells' sensitivity to seven antibiotics and one herbicide, and our results suggested that 20 ${\mu}g$/ ml of Basta could inhibit cell growth completely. The bar gene, which encodes for phosphinothricin acetyltransferase and confers herbicide tolerance, was introduced into the cells via the above established method. The results of PCR and PCR-Southern blot analyses indicated that the gene was successfully integrated into the genome of the transformants.

키워드

참고문헌

  1. Avron, M. 1986. The osmotic components of halotolerant algae. Trends Biochem. Sci. 11, 5-6 https://doi.org/10.1016/0968-0004(86)90218-5
  2. Ben-Amotz, A. 1993. Production of ${\beta}-carotene$ and vitamins by the halotolerant alga Dunaliella, p.411-417. In D.H. Attaway and O.R. Zaborsky (eds.), Marine Biotechnology Volume 1. Pharmaceutical and Bioactive Natural Products, Plenum Press, New York
  3. Ben-Amotz, A. and M. Avron. 1990. The biotechnology of cultivating the halotolerant alga Dunaliella. Trends Biotech. 8, 121- 126 https://doi.org/10.1016/0167-7799(90)90152-N
  4. Bendich, A. 1991. ${\beta}-carotene$ and the immune response. Proc. Nutr. Soc. 50, 263-274
  5. Boynton, J.E., N.W. Gillham, E.H. Harris, J.P. Hosler, A.M. Johnson, A.R. Jones, B.L. Randolph-Anderson, D. Robertson, T.M. Klein, K.B. Shark, and J.C. Sanford. 1988. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240, 1534-1537 https://doi.org/10.1126/science.2897716
  6. Burton, G.W. and K.U. Ingold. 1984. ${\beta}-carotene: an unusual type of lipid antioxidant. Science 224, 569-573 https://doi.org/10.1126/science.6710156
  7. Chen, Y., Y. Wang, Y. Sun, L. Zhang, and W. Li. 2001. Highly efficient expression of rabbit neutrophil peptide-1 gene in Chlorella ellipsoidea cells. Curr Genet. 39, 365-370 https://doi.org/10.1007/s002940100205
  8. Dunahay, T.G. 1993. Transformation of Chlamydomonas reinhardtii with silicon carbide whiskers. Biotechniques 15, 452-460
  9. Geng, D.G., Y.Q. Wang, P. Wang, W.B. Li, and Y.R. Sun. 2003. Stable expression of hepatitis B surface antigen gene in Dunaliella salina. J. Appl. Phycol. 15, 451-456 https://doi.org/10.1023/B:JAPH.0000004298.89183.e5
  10. Geng, D.G., Y.Q. Wang, W.B. Li, and Y.R. Sun. 2002. Transient expression of GUS gene in Dunaliella salina. High Tech. Lett. 12, 35-39. (in Chinese with English abstract)
  11. Jefferson, R.A. 1987. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5, 387-405 https://doi.org/10.1007/BF02667740
  12. Jiang, P., S. Qin, and C.K. Tseng. 2002. Expression of hepatitis B surface antigen gene (HBsAg) in Laminaria japonica (Laminariales, Phaeophyta). Chin. Sci. Bull. 47, 1438-1440 https://doi.org/10.1360/02tb9317
  13. Johnson, M.K., E.J. Johnson, R.D. Macelroy, H.L. Speer, and B.S. Nruff. 1968. Effect of salts on the halophilic alga Dunaliella viridis. J. Bacteriol. 95, 1461-1468
  14. Kindle, K.L. 1990. High frequency nuclear transformation of Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 93, 13689-13693
  15. Leach, G., G. Oliveira, and R. Morais. 1998. Spray-drying of Dunaliella salina to produce a ${\beta}-carotene$ rich powder. J. Indus. Micro. Biotech. 20, 82-85 https://doi.org/10.1038/sj.jim.2900485
  16. Qin, S., D.Z. Yu, P. Jiang, C.Y. Teng, and C.K. Tseng. 2003. Stable expression of LacZ reporter gene in the seaweed Undaria pinnatifila. High Sci. Lett. 13, 87-89. (in Chinese with English abstract)
  17. Sambrook, J., E.F. Fritch, and T. Maniatis. 1989. Molecular cloning (A Laboratory Manual 2nd), p.19-20. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
  18. Sasidharanpillai, V.K., W. M. Rachel, S.R. Vanga, J.R. Basuthkar, and V.R. Manchikatla. 2004. Genetic transformation of the green alga-Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci. 166, 731-738 https://doi.org/10.1016/j.plantsci.2003.11.012
  19. Teng, C.Y., S. Qin, J.G. Liu, D.Z.Yu, C.W. Cheng, and C.K. Tseng. 2002. Transient expression of lacZ in bombarded unicellular green alga Haematococcus pluvialis. J. Appl. Phycol. 14, 495- 500