퍼지 알고리즘의 융합에 의한 다중분광 영상의 패턴분류

Pattern Classification of Multi-Spectral Satellite Images based on Fusion of Fuzzy Algorithms

  • 전영준 (동의대학교 컴퓨터공학과) ;
  • 김진일 (동의대학교 컴퓨터공학과)
  • 발행 : 2005.07.01

초록

본 논문에서는 다중분광 영상의 분류를 위하여 퍼지 G-K(Gustafson- Kessel) 알고리즘과 PCM 알고리즘을 융합한 분류방법을 제안하였다. 제안된 방법은 학습데이타를 이용하여 퍼지 G-K 알고리즘을 수행한 후 그 결과를 이용하여 PCM 알고리즘을 수행한다 PCM 알고리즘과 퍼지 G-K 알고리즘 분류결과를 비교하여 그 결과가 일치하면 해당 항목으로 분류항목을 결정한다. 일치하지 않는 화소는 PCM 알고리즘의 평균내부거리 안쪽에 있는 화소들을 새로운 학습데이타로 하여 베이시안 최대우도 분류를 수행하여 분류항목을 결정한다. 평균내부거리 안쪽에 있는 화소 데이타는 정규분포형태를 보여준다. 다차원 다중분광 영상인 IKONOS와 LANDSAT TM 위성영상을 이용하여 제안된 알고리즘의 효율성을 검증한 결과 퍼지 G-K 알고리즘과 PCM 알고리즘 그리고 전통적인 분류 방법인 최대우도 분류 알고리즘보다 전체 정확도가 더 높은 결과를 얻을 수 있었다

This paper proposes classification of multi-spectral satellite image based on fusion of fuzzy G-K (Gustafson-Kessel) algorithm and PCM algorithm. The suggested algorithm establishes the initial cluster centers by selecting training data from each category, and then executes the fuzzy G-K algorithm. PCM algorithm perform using classification result of the fuzzy G-K algorithm. The classification categories are allocated to the corresponding category when the results of classification by fuzzy G-K algorithm and PCM algorithm belong to the same category. If the classification result of two algorithms belongs to the different category, the pixels are allocated by Bayesian maximum likelihood algorithm. Bayesian maximum likelihood algorithm uses the data from the interior of the average intracluster distance. The information of the pixels within the average intracluster distance has a positive normal distribution. It improves classification result by giving a positive effect in Bayesian maximum likelihood algorithm. The proposed method is applied to IKONOS and Landsat TM remote sensing satellite image for the test. As a result, the overall accuracy showed a better outcome than individual Fuzzy G-K algorithm and PCM algorithm or the conventional maximum likelihood classification algorithm.

키워드

참고문헌

  1. John A. Richards, Remote Sensing Digital Image ,Analysis : An Introduction, Second, Revised. and Enlarged Edition, pp,229-262, Springer-Verlag, 1994
  2. Pierce, L, Samples, G' Dobson, M.G., Ulaby, F' 'An automated unsupervised! supervised classification methodology,' Geoscience and Remote Sensing Symposium Proceedings, 1998. IGARSS '98, 1998 IEEE International, Volume: 4, pp,17811783, 6-10 July 1998 https://doi.org/10.1109/IGARSS.1998.703650
  3. Hoffbeck, Joseph p, and David A. Landgrebe, 'Classification of Remote Sensing Images having High Spectral Resolution,' Remote Sensing of Environment, Vol. 57, No, 3, pp 119-126, September 1996 https://doi.org/10.1016/0034-4257(95)00138-7
  4. Rego, L.F,G., Koch, B., 'Automatic classification of land cover with high resolution data of the Rio de Janeiro City Brazil,' Remote Sensing and Data Fusion over Urban Areas, 2003, 2nd GRSS/ISPRS Joint Workshop on, pp. 172-176, 22-23 May 2003
  5. Melgani, F., Hashemy BAR and Taha S,M,R. : An explicit fuzzy supervised classification method for multispectral remote sensing images, Geoscience and Remote Sensing, IEEE Transactions on, Vol. 38, Issue 1 Part 1, pp,287-295, 2000 https://doi.org/10.1109/36.823921
  6. Nakashima, T., Nakai, G., Ishibuchi, H., 'Constructing fuzzy ensembles for pattern classification problems,' Systems, Man and Cybernetics, 2003. IEEE International Conference on, Volume: 4, pp,3200- 3205, 5-8 Oct. 2003
  7. Weiyang Zhou, 'Verification of the nonparametric characteristics of backpropagation neural networks for image classification,' Geoscience and Remote Sensing, IEEE Transactions on, Volume: 37, Issue: 2, pp,771-779, March 1999 https://doi.org/10.1109/36.752193
  8. Mehmet I Saglam, Bingul Yazgan, Okan K Ersoy, 'Classification of Satellite Images by using Selforganizing map and Linear Support Vector Machine Decision tree,' GISdevelopment Conference Proceedings of Map Asia, 2003
  9. Yuyu Zhou, Hong Chen, Qijiang Zhu, 'The research of classification algorithm based on fuzzy clustering and neural network,' Geoscience and Remote Sensing Symposium, 2002, IGARSS '02, 2002 IEEE International, Volume: 4, pp.2525-2527, 24-28 June 2002
  10. 한종규, 이상구, '뉴로-퍼지 알고리즘을 이용한 원격탐사 화상의 지표면 패턴분류 시스템의 구현', 퍼지 및 지능시스템학회 논문지, 제9권 제5호, pp,472-479, 1999
  11. James C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum, NY, 1981
  12. N.R. Pal and J.C. Bezdek : On cluster validity for the fuzzy c-means model, IEEE Transactions on Fuzzy Systems, Vol. 3, No. pp.3370-379, 1995 https://doi.org/10.1109/91.413225
  13. R. Krishnapuram and J. M. Keller : A possibilistic approach to clustering, IEEE Trans. on Fuzzy Systems, Vol. 1, No.2, pp.98-110, 1993 https://doi.org/10.1109/91.227387
  14. D.Gustafson and W.Kessel, 'Fuzzy clustering with a fuzzy covariance matrix,' In Proc. IEEE CDC, San Diego, USA, pp.761-766, 1979 https://doi.org/10.1109/CDC.1978.268028
  15. Babuka, R, van der Veen, P.J., Kaymak, U., 'Improved covariance estimation for Gustafson-Kessel clustering,' Fuzzy Systems, 2002. FUZZ-IEEE'02. Proceedings of the 2002 IEEE International Conference on, Volume: 2, pp.1081-1085, May 2002 https://doi.org/10.1109/FUZZ.2002.1006654
  16. Amal S. Perera, Masum H. Serazi, William Perrizo : Performance Improvement for Bayesian Classification on Spatial Data with P-Trees, 15th International Conference on Computer Applications in Industry and Engineering, 2002