Variations of Complex Permittivity due to Water Content and Heavy Metal Contamination

함수비와 중금속 오염도에 따른 유전상수의 변화

  • Oh Myoun-Hak (Research institute of Energy and resources, Seoul Nationl Univ) ;
  • Kim Yong-Sung (School of Civil, Urban & Geosystem Engrg., Seoul National Univ) ;
  • Yoo Dong-Ju (School of Civil, Urban & Geosystem Engrg., Seoul National Univ) ;
  • Park Jun-Boum (School of Civil, Urban & Geosystem Engrg., Seoul National Univ)
  • Published : 2005.07.01

Abstract

Laboratory experiments were performed to examine the effects of water content and to see if permittivity had sufficient sensitivity to identify subsurface contamination. Both real and imaginary permittivities of unsaturated sand were strongly governed by the volumetric water content. Especially, a linear relationship between real permittivity and volumetric water content was derived at high frequencies (MHz ranges). Heavy metals in pore fluid result in significant increases in the effective imaginary permittivity, due to ionic conduction, but decreases in the real permittivity arises due to the decreased orientational polarization of water molecules caused by hydration of ions. Clear increase in the effective imaginary permittivity with heavy metal concentration was found to be valuable in the application of electrical methods for detecting heavy metals in the subsurface. However, because the permittivity is primarily dependent on the volumetric water content of soil, pre-evaluation on the volumetric water content is required.

지반오염조사에 대한 유전상수 측정기법의 적용성을 평가하기 위하여 함수비와 중금속 오염도에 따른 흙의 유전특성 변화를 분석하였다. 유전상수의 실수부와 허수부 모두 체적함수비에 따른 증가경향을 나타내었으며, 특히 MHz 범위에서 유전상수 실수부는 쌍극자모멘트에 비례하기 때문에 흙의 유전상수는 체적함수비에 따른 선형적인 증가경향을 나타내었다. 중금속 용액은 50 kHz 이하의 저주파영역에서 전극분극효과에 의해 농도 증가에 따라 유전상수 실수부가 증가하였으나, 고주파 영역에서는 이온의 수화작용에 의한 물분자의 배향분극 발현의 감소로 인하여 감소하는 경향을 나타내었다. 유전상수 허수부는 중금속 농도 증가에 따라 전도손실의 증가에 의하여 모든 주파수 영역에서 증가하는 경향을 나타내었다. 흙과 중금속 혼합시료의 경우 함수비가 큰 시료에서는 중금속 용액 자체의 유전특성이 그대로 발현되었으나, 함수비가 작은 시료에서는 공간전하분극의 영향이 우세하여 유전상수 실수부가 $10-20\%$정도 증가하는 경향을 나타내었다. 유전상수 허수부의 경우에는 중금속 농도 증가에 따른 뚜렷한 증가경향을 확인할 수 있었다. 본 연구의 결과에 의하면 중금속의 오염감지에 대해서는 유전상수 실수부보다는 허수부의 적용성이 높은 것으로 나타났으며, 현장에서의 정확한 오염도 평가를 위해서는 함수비에 대한 평가가 선행되어야 할 것으로 판단된다.

Keywords

References

  1. ASTM D150 (1994), Standard test methods for AC loss characteristics and permittivity (dielectric constant) of solid electrical insulation, ASTM D150-94, Philadelphia
  2. Darayan, S., Liu, C., Shen, L. C., and Shatthuck, D. (1998), 'Measurement of electrical properties of contaminated soil', Geophysical Prospecting, 46, pp.477-488 https://doi.org/10.1046/j.1365-2478.1998.00104.x
  3. Dean, J. A. (1999), Lange's Handbook of Chemistry, 15th Ed. McGraw-Hill, NY
  4. Francisca, F. M. and Rinaldi, V. A. (2003), 'Complex dielectric permittivity of soil-organic mixtures (20 MHz - 1.3 GHz)', Journal of Environmental Engineering, 129(4), pp.347-357 https://doi.org/10.1061/(ASCE)0733-9372(2003)129:4(347)
  5. Fukue, M., Minato, T., Matsumoto, M., Horibe, H., and Taya, N. (2001), 'Use of a resistivity cone for detecting contaminated soil layers', Engineering Geology, 60, pp.361-369 https://doi.org/10.1016/S0013-7952(00)00116-2
  6. Gardner, C. M. K., Dean, T. J., and Cooper, J. D. (1998), 'Soil water conteot measurement with a high-frequency capacitance sensor', Journal of agricultural Engineering Research, 71, pp. 395-403 https://doi.org/10.1006/jaer.1998.0338
  7. Kaya, A and Fang, H. Y. (1997), 'Identification of contaminated soils by dielectric constant and electrical conductivity', Journal of Environmental Engineering, 123(2), pp.169-177 https://doi.org/10.1061/(ASCE)0733-9372(1997)123:2(169)
  8. Lindsay, J. B., Shang, J. Q., and Rowe, R. K. (2002), 'Using complex permittivity and artificial neural networks for contaminant prediction', Journal of Environmental Engineering, 128(8), pp. 740-747 https://doi.org/10.1061/(ASCE)0733-9372(2002)128:8(740)
  9. Lundien, J. R. (1971), 'Laboratory measurement of electromagnetic propagation constants in 1.0- to 1.5-GHz microwave special region', Report 5, Terrain Analysis by Electromagnetic Means, Technical Report No.3-693, U.S. Army Engineer Waterways Experiment Station
  10. Oh, M. H., Kim, Y. S., Park, J. B., and Yoon, H. S. (2005), 'complex permittivity of sand at low frequency', Journal of the Korean Geotechncial Society, Vol.21, No.2, pp.93-103
  11. Okoye, C. N., Cotton, T. R., and O'Meara, D. (1995), 'Application of resistivity cone penetration testing for qualitative delineation of creosote contamination in saturated soils', Proceedings of Geoenvironment 2000, ASCE, New York, pp.151-166
  12. Oxtoby, D. W. and Nachtrieb, N. H. (1996), Principles of Modern Chemistry, 3rd Ed., Saunders College Publishing
  13. Rinaldi, V. A. and Cuestas, G. A. (2002), 'Ohmic conductivity of a compacted silty clay', Journal of Geotechnical and Geoenvironmental Engineering, 128(10), pp.824-835 https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(824)
  14. Rinaldi, V. A. and Redolfi, E. R. (1996), 'The dielectric constant of soil-NAPL mixtures at low frequencies (100 Hz 10 MHz)', Proceeding of Nonaqueous Phase Liquids (NAPLs) in the Subsurface Environment: Assessment and Remediation, ASCE, Washington D.C., pp.163-174
  15. Robinson, D. A., Gardner, C. M. K., and Cooper, J. D. (1999), 'Measurement of relative permittivity in sandy soils using TDR, capacitance and theta probes: comparison, including the effects of bulk soil electrical conductivity', Journal of Hydrology, 223, pp.198-211 https://doi.org/10.1016/S0022-1694(99)00121-3
  16. Rowe, R. K., Shang, J. Q., and Xie, Y. (2001), 'Complex permittivity measurement system for detecting soil contamination', Canadian Geotechnical Journal, 39, pp.498-506
  17. Rowe, R. K., Shang, J. Q., and Xie, Y. (2002), 'Effect of permeating solutions on complex permittivity of compacted clay', Canadian Geotechnical Journal, 39, pp.1016-1025 https://doi.org/10.1139/t02-051
  18. Santamarina, J. C. (2001), Soils and waves, John Wiley & Sons
  19. Santamarina, J. C. and Fam, M (1997), 'Dielectric permittivity of soils mixed with organic and inorganic fluids (0.2 GHz to 1.30 GHz)', Journal of Environmental and Engineering Geophysics, 2(1), pp.37-51 https://doi.org/10.4133/JEEG2.1.37
  20. Thevanayagam, S. (1995), 'Frequency-domain analysis of electrical dispersion of soils', Journal of Geotechnical Engineering, 121(8), pp.618-628 https://doi.org/10.1061/(ASCE)0733-9410(1995)121:8(618)
  21. Topp, G. C, Davis, J. L., and Annan, A. P. (1980), 'Electromagnetic determination of soil water content: Measurements in coaxial transmission lines', Water Resources Research, 16(3), pp.574-582 https://doi.org/10.1029/WR016i003p00574
  22. Vanysek, P. (2002), 'Ionic conductivity and diffusion at in finite dilution', In: CRC Handbook of Chemistry and Physics, 83rd Ed., CRC Press
  23. Wilson, L. G., Everett, L. G., and Cullen, S. J. (eds.) (1995), Handbook of Vadose Zone Characterization & Monitoring, CRC Press