Preparation and Electrochemical Characteristics of Polymer Electrolyte Based on MCM-41/Poly(ethylene oxide) Composites

MCM-41/Po1y(ethylene oxide) 복합체로 구성된 고분자 전해질의 제조와 전기화학적 특성

  • Kim Seok (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kang Jin-Young (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Lee Sung-Goo (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Lee Jae-Rook (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Park Soo-Jin (Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • 김석 (한국화학연구원 화학소재연구부) ;
  • 강진영 (한국화학연구원 화학소재연구부) ;
  • 이성구 (한국화학연구원 화학소재연구부) ;
  • 이재락 (한국화학연구원 화학소재연구부) ;
  • 박수진 (한국화학연구원 화학소재연구부)
  • Published : 2005.07.01

Abstract

In this work, the solid polymer electrolyte (SPE) composites, which are composed of poly(ethylene oxide) (PEO), mesoporous mobil crystalline material-41 (MCM-41), and lithium salt, are prepared in order to investigate the influence of MCM-41 contents on the ionic conductivity of the composites. The crystallinity of the SPE composites was evaluated using differential scanning calorimeter (DSC) and X-ray diffraction (XRD). The ionic conductivity of the SPE composites was measured by the frequency response analyzer (FRA). As a result, the addition of MCM-41 into the polymeric mixture prohibited the growth of PEO crystalline domain due to the mesoporous structures of the MCM-41. The $P(EO)_{16}LiClO_4$/MCM-41 electrolytes show an increased ion conductivity as a function of MCM-41 content up to 8 $wt\%$ and a slightly decreased conductivity over 8 $wt\%$. These ion conductivity characteristics are dependent on a change of polymer crystallinity in the presence of MCM-41 system.

본 연구에서는 mobil crystalline material-41(MCM-41)의 함량 변화에 따른 고체 고분자 전해질(solid polymer electrolyte, SPE)의 이온전도도의 변화를 고찰하기 위하여, poly(ethylene oxide)(PEO), 메조포러스 기공 구조를 가지는 MCM-41 분자체, 그리고 리튬염을 이용하여 SPE를 제조하였다. SPE의 결정화도는 X-선 회절분석(XRD) 및 시차주사열량계(DSC)를 통하여 살펴보았으며, 주파수반응분석(FRA)으로 이온전도도를 측정하여 이온 전도거동을 고찰하였다. 그 결과, MCM-41을 고분자 혼합물에 첨가함에 따라 PEO의 견정성 영역의 성장을 억제할 수 있었으며, 이는 MCM-41이 메조포러스한 구조를 가지고 있기 때문이다. 또한, $P(EO)_{16}LiClO_4$/MCM-41 전해질 복합체의 이온 전도도는 8$wt\%$의 MCM-41을 첨가한 경우 가장 큰 이온전도도를 가지며, 8$wt\%$이상에서는 다소 감소된 이온전도도를 가짐을 관찰할 수 있었다. 이러한 이온전도도의 특성은 MCM-41의 첨가에 따른 고분자의 결정화도 변화와 밀접한 관계를 맺고 있다.

Keywords

References

  1. K. K. Chawla, Composite Materials, Science and Engineering, Springer, New York, 1987
  2. R. Riberiro, G. G. Silva, and N. D. S. Mohallem, Electrochim. Acta, 46, 1679(2001) https://doi.org/10.1016/S0013-4686(01)00500-X
  3. S.J. Park and B R. Jun, J. Colloid Interface Sci., 284, 204 (2005) https://doi.org/10.1016/j.jcis.2004.09.074
  4. S. J. Parkzzv, T. J. Ma, and D R Lee, J. Colloid Interface Sci., 252, 249 (2002) https://doi.org/10.1006/jcis.2002.8479
  5. J. R. M. Callum, Polymer Electrolyte Reviews, Elsevier, Amsterdam, 1987
  6. J. R. Owen, A. L. Lasker, and S. Chandra, Superionic Solids and Solid State Electrolytes, Academic Press, New York, 1989
  7. B. Scrosati, Application of Electroactive Polymer, Chapman & Hall, London, 1993
  8. M. M. Doeff, P. Georen, J. Qiao, J. Kerr, and L. C. D. Jonghe, J. Electrochem. Soc., 146,2024 (1999) https://doi.org/10.1149/1.1391712
  9. M. J. Reddy and P. Chu, J. Power Sources, 109, 340 (2002) https://doi.org/10.1016/S0378-7753(02)00084-8
  10. F. Croce and B. Scrosati, J. Power Sources, 43,43 (1993)
  11. C. J. Leo, G. V. S. Rao, and B. V. R. Chowdari, Solid State Ionics, 148,159 (2002) https://doi.org/10.1016/S0167-2738(02)00107-8
  12. G. B. Appetecchi, F. Croce, M. Mastrogostino, B. Scrosati, F. Soavi, and F. Zanelli, J. Electrochem. Soc, 145,4133 (1998) https://doi.org/10.1149/1.1838926
  13. J. Bujdak, E. Hackett, and E. P. Gianndis, Chem. Mater., 12,2168 (2000) https://doi.org/10.1021/cm990677p
  14. O. Dag, A. Varma, G. A. Ozin, and C. T. Kresge, J. Mater. Chem., 9, 1475 (1999) https://doi.org/10.1039/a900955h
  15. G. B. Appetecchi, S. Scaccia, and S. Passerini, J. Electrochem. Soc., 147, 4448 (2000) https://doi.org/10.1149/1.1394084
  16. V. D. Noto, M. Fauri, M. Vittadello, S. Lavina, and S. Biscazzo, Electrochim. Acta, 46, 1587(2001) https://doi.org/10.1016/S0013-4686(01)00500-X
  17. H. S. Lee, X. Q. Yang, J. McBreen, Z. S. Xu, T. A. Skotheim, and Y. Okamoto, J. Electrochem. Soc., 141, 886 (1994) https://doi.org/10.1149/1.2054852
  18. P. P. Prosini, T. Fujieda, S. Passerini, M. Shikano, and T. Sakai, Electrochem. Commun., 2,44 (2000) https://doi.org/10.1016/S1388-2481(99)00138-1
  19. M. M. E. Jacob and A. K. Arof, Electrochim. Acta, 45, 1701 (2000) https://doi.org/10.1016/S0013-4686(99)00316-3
  20. F. Croce, R. Curini, A. Martinelli, L. Persi, F. Ronci, B. Scrosati, and R. Caminiti, J. Phys. Chem. B, 103,10632 (1999) https://doi.org/10.1021/jp992307u
  21. D. Golodnitsky and E. Peled, Electrochim. Acta, 45, 1431 (2000) https://doi.org/10.1016/S0013-4686(99)00355-2
  22. E. Strauss, D. Golodnitsky, G. Ardel, and E. Peled, Electrochim. Acta, 43, 1315 (1998) https://doi.org/10.1016/S0013-4686(97)10036-6
  23. Y. Dai, Y. Wang, S. G. Greenbaum, S. A. Bajue, D. Golodnisky, G. Ardel, E. Strauss, and E. Peled, Electrochim. Acta, 43, 1557 (1998) https://doi.org/10.1016/S0013-4686(97)10053-6
  24. D. Golodnitsky, G. Ardel, E. Strauss, E. Peled, Y. Lareah, and Y. Rosenberg, J. Electrochem. Soc, 144,3484 (1997) https://doi.org/10.1149/1.1838037
  25. G. B. Appetecchi, F. Croce, L. Persi, F. Ronci, and B. Scrosati, Electrochim. Acta, 45,1481(2000) https://doi.org/10.1016/S0013-4686(99)00363-1
  26. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, Nature, 359,710 (1992) https://doi.org/10.1038/359710a0
  27. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T.Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, and J. L. Schlenker, J. Am. Chem. Soc, 114, 10834 (1992) https://doi.org/10.1021/ja00053a020
  28. P. Decyk, M. Trejda, and M. Ziolek, C. R. Chimie., 8,635 (2005) https://doi.org/10.1016/j.crci.2004.11.022
  29. J. M. Kim, J. H. Kwak, S. N. Jun, and R. Ryoo, J. Phys. Chem., 199, 16742(1995)
  30. T. Sreekanth, M. J. Reddy, S. Subramanyam, and U. V. Subba Rao, Mater. Sci. Eng.,K 64, 107(1999)
  31. M. J. Reddy and P.P. Chu, Electrochim. Acta, 47, 1189(2002) https://doi.org/10.1016/S0013-4686(01)00846-5
  32. F. Croce, L. Persi, B. Scrosati, F. S. Fiory, E. Plichta, and M. A. Hendrickson, Electrochim. Acta, 46,2457 (2001) https://doi.org/10.1016/S0013-4686(01)00500-X
  33. Z. Wen, T. Itoh, M. Ikeda, N. Hirata, M Kubo, and O. Yamamoto, J. Power Sources, 90,20 (2000) https://doi.org/10.1016/S0378-7753(00)00442-0