The Effect of Bead Size and Drug Solubility on Drug Release from Osmotic Granule Delivery System for Nifedipine

니페디핀의 삼투정 과립 시스템에서 과립의 크기와 약물의 용해도가 약물의 방출에 미치는 영향

  • Jeong Sung Chan (Department of Polymer Engineering, Pukyung National University) ;
  • Chon Se Kang (Department of Advanced Organic Materials Engineering, Chonbuk National University) ;
  • Jo Young Ho (Department of Advanced Organic Materials Engineering, Chonbuk National University) ;
  • Kim Moon Suk (Nanobiomaterials Laboratory, Korea Research Institute of Chemical Technology) ;
  • Lee Bong (Department of Polymer Engineering, Pukyung National University) ;
  • Khang Gilson (Department of Advanced Organic Materials Engineering, Chonbuk National University, Nanobiomaterials Laboratory, Korea Research Institute of Chemical Technology) ;
  • Lee Hai Bang (Department of Advanced Organic Materials Engineering, Chonbuk National University, Nanobiomaterials Laboratory, Korea Research Institute of Chemical Technology)
  • 정성찬 (부경대학교 고분자공학과) ;
  • 전세강 (전북대학교 유기신물질공학과) ;
  • 조영호 (전북대학교 유기신물질공학과) ;
  • 김문석 (한국화학연구원 나노생체재료연구팀) ;
  • 이봉 (부경대학교 고분자공학과) ;
  • 강길선 (전북대학교 유기신물질공학과, 한국화학연구원 나노생체재료연구팀) ;
  • 이해방 (전북대학교 유기신물질공학과, 한국화학연구원 나노생체재료연구팀)
  • Published : 2005.05.01

Abstract

Osmotic granule system which is one of the drug delivery systems has been developed to improve manufacturing process and other problems of tablet osmotic systems. It consists of water swellable seed layer, nifedipine drug layer, and drug release controlled membrane layer and manufactured by fluidized bed coater. The granule size and mombrane thickness can be controlled by various amounts of seed and coating solution, respectively. It could be observed that the morphology of osmotic granule was different at each coating step as well as type of coating solution. The bigger the size of granule, the slower the release rate was observed due to decreasing the total specific surface wed of granule. Also, it was observed that the increase of membrane thickness was caused to retard the dissolution of nifedipine due to decreasing the water absorption rate. The drug solubility for dissolution media is greatly affected to nifedipine release. From these results, we assured that osmotic granule can be fabricated by fluidized bed coating methods, and the appropriate release profile could be controlled by the controlling of bead size, membrane thickness and dissolution media.

약물을 전달하기 위한 많은 방법들 중의 하나인 삼투압을 이용한 과립화는 타블렛 제형의 단점인 제조공정의 복잡함과 여러 문제점을 보완하기 위해 시도되었다. 유동층 코팅기로 제조된 삼투압을 이용한 과립은 물을 흡수하면 팽윤하는 시드층과 모델 약물인 니페디핀을 포함하는 약물층, 그리고 약물의 방출을 조절할 수 있는 반투막으로 구성되었다. 서로 다른 크기와 반투막의 두께는 각기 다른 양의 시드와 반투막 코팅액을 사용하여 얻을 수 있었다. 얻어진 과립은 각 코팅 단계에 따라서 서로 다른 모폴로지는 코팅되는 용액의 형태에 따라 다르게 나타났다. 과립의 크기가 클수록 방출은 지연되며, 이는 과립이 가지는 비표면적의 차이로 인한 것이라 사료된다. 또한 반투막의 두께가 두꺼울수록 약물의 방출이 지연되는데 이는 반투막이 두꺼울수록 물의 흡수가 늦어지는 것으로 추정된다 용출액의 약물 용해도는 약물의 방출에 큰 영향을 미쳐 용출액 선택의 중요성을 알 수 있었다. 이 실험을 통해 삼투압을 이용한 과립은 유동층 코팅을 이용하여 제조할 수 있었으며, 과립의 크기와 반투막의 두께, 돗출액에 따라 약물의 방출을 조절할수 있음을 확인하였다.

Keywords

References

  1. G. Khang, J. M. Rhee, and H. B. Lee, 'Drug Delivery System Using Osmotic Pump', in High Efficiency Anticancer Drug Using Polymeric Biomaterials, H. B. Lee, Editor, Munundang Publishing Co., Seoul, Chap. 10, pp 135-154 (2004)
  2. H. B. Lee, D. H. Lee, B. K. Kang, S. Y. Jeung, and G. Khang, J. Korean Pharm. Sci., 32, 241 (2002)
  3. G. Khang and H. B. Lee, Biomedical Polymers, Korean Chemical Society Press, Munundang, Seoul, Korea, 2001
  4. L. Liu, G. Khang, J. M. Rhee, and H. B. Lee, Korea Polym. J., 7, 289 (1999)
  5. L. Liu, G. Khang, J. M. Rhee, and H. B. Lee, Biomater. Res., 3, 47 (1999)
  6. L. Liu, G. Khang, J. M. Rhee, and H. B. Lee, Bio-Med. Mater. Eng., 9, 297 (1999)
  7. L. Liu, G. Khang, J. M. Rhee, and H. B. Lee, J. Control. Rel., 67, 309 (2000) https://doi.org/10.1016/S0168-3659(00)00222-4
  8. L. Liu, J. Ku, G. Khang, B. Lee, J. M. Rhee, and H. B. Lee, J. Control. Rel., 68, 145 (2000) https://doi.org/10.1016/S0168-3659(00)00243-1
  9. G. Khang, J. Ku, B. Lee, and H. B. Lee, Biomater. Res., 4, 20 (2000)
  10. D. H. Lee, G. Khang, and H. B. Lee, Biomater. Res., 5, 1 (2001)
  11. B. K. Kang, G. Khang, J. M. Kim, S. Y. Jeung, H. B. Lee, and S. H. Cho, J. Korean Pharm. Sci., 33, 179 (2003)
  12. L. Lui, G. Khang, J. M. Rhee, and H. B. Lee, Acta Pharm. Sinica, 38, 620 (2003)
  13. L. Lui, Q. Xu, G. Khang, J. M. Rhee, and H. B. Lee, Acta Pharm. Sinica, 38, 966 (2003)
  14. F. Theeuwes and T. Higuchi, U.S. Patent 3,845,770 (1972)
  15. F. Theeuwes, J. Pharm. Sci., 64, 1987 (1975) https://doi.org/10.1002/jps.2600641218
  16. P. S. L. Wong, B. L. Barclay, J. C. Deters, and F. Theeuwes, U.S. Patent 4,765,989 (1986)
  17. F. Theeuwes, Pharm. Int., 5, 293 (1984)
  18. F. Theeuwes, Novel Drug Delivery Systems, ADIS Press, 157 (1981)
  19. H. Kage, R. Abe, R. Hattanda, T. Zhou, H. Ogura, and Y. Matsuno, Powder Technol., 130, 203 (2003) https://doi.org/10.1016/S0032-5910(02)00267-X
  20. P. B. Deast, Microencapsulation and Related Drug Processes, Marcel Dekker, New York, 1984
  21. M. Donbrow(Ed.), Microencapsulation and Nanoparticles in Medicine and Pharmacy, CRC Press, Boca Raton, FL, 1991
  22. H. Ho, C. Chen, and M. Sheu, J. Control. Rel., 68, 433 (2000) https://doi.org/10.1016/S0168-3659(00)00281-9
  23. Y. Wang and M. A. Winnik, Macromol., 23, 4731 (1990) https://doi.org/10.1021/ma00223a038
  24. J. Siepmann, F. Lecomte, and R. Bodmeirer, J. Control. Rel., 60, 379 (1999) https://doi.org/10.1016/S0168-3659(99)00093-0
  25. P. Rama Rao and P.V. Diwan, Pharm. Acta Helv., 72, 47 (1997) https://doi.org/10.1016/S0031-6865(96)00060-X
  26. M. F. Saettone, G. Perini, P. Rijli, L. Rodriguez, and M. Cini, Int. J. Pharm., 126, 83 (1995) https://doi.org/10.1016/0378-5173(95)04099-4
  27. P. S. Shah and J. L. Zatz, Drug. Dev. Ind. Pharm., 18, 1759 (1992) https://doi.org/10.3109/03639049209040900
  28. T. U. Okarter and K. Singla, Drug. Dev. Ind. Pharm., 26, 323 (2000) https://doi.org/10.1081/DDC-100100360
  29. R. C. Rowe, A. D. Kotaras, and E. F. T. White, Int. J. Pharm., 22, 57 (1984) https://doi.org/10.1016/0378-5173(84)90045-0
  30. J. C. Gutierrez-Rocca and J. W. McGinity, Int. J. Pharm., 103, 293 (1994) https://doi.org/10.1016/0378-5173(94)90180-5
  31. F. W. Goodhart, M. R. Harris, K. S. Murthy, and R. U. Nesbitt, Pharm. Technol., 8, 64 (1984)
  32. I. Niopas and and A. C. Daftsios, J. Pharm. Biomed. Anal., 32, 1213 (2003) https://doi.org/10.1016/S0731-7085(03)00162-6
  33. M. Takahashi, M. Mochizuki, T. Itoh, and M. Ohta, Chem. Pharm. Bull., 42, 333 (1994) https://doi.org/10.1248/cpb.42.333
  34. E. C. Feleder, M. Befumo, M. A. Ricci, Coppari, and J. Faour, Clin. Pharmacol. Therap., 75, PI-41 (2004)
  35. J. S. Grundy and R. T. Foster, Clin. Pharmacokinet., 30, 28 (1996) https://doi.org/10.2165/00003088-199630010-00003
  36. P. D. Henry, Am. J. Cardiol., 46, 1047 (1980) https://doi.org/10.1016/0002-9149(80)90366-5
  37. P, Colombo, R. Bettimi, G. Massimo, P. L. Catellani, P. Santi, and N. A. Peppas, J. Pharm. Sci., 84, 991 (1995) https://doi.org/10.1002/jps.2600840816
  38. R. C. Rowe, Int. J. Pharm., 29, 37 (1986) https://doi.org/10.1016/0378-5173(86)90197-3
  39. A. Wade and P. J. Weller (Eds.), Handbook of Pharmaceutical Excipients, Am. Pharm. Assoc., Washington DC, 1994
  40. M. R. Harris, I. Ghebre-Sellassie, and R. U. Nesbitt, Pharm. Technol., 10, 102 (1986)
  41. M. M. Meier, L. A. Kanis, and V. Soldi, Int. J. Pharm., 278, 99 (2004) https://doi.org/10.1016/j.ijpharm.2004.03.005
  42. H. S. A. Auda, T. A. Najjar, K. I. Al-Khamis, B. M. Al-Hadiya, N. M. Ghilzai, and N. F. Al-Fawzan, J. Pharm. Biomed. Anal., 22, 241 (2000) https://doi.org/10.1016/S0731-7085(99)00258-7
  43. I. Niopas and A. C. Dafrsios, J. Pharm. Biomed. Anal., 32, 1213 (2003) https://doi.org/10.1016/S0731-7085(03)00162-6