Design of IIR Filters with Prefilter-Equalizer Structure for Narrowband Applications

협대역 응용 시스템을 위한 전처리기-등화기 구조의 IIR 여파기 설계 방법

  • Published : 2005.07.01

Abstract

Optimal methods for designing multiplierless IIR filters with cascaded prefilter-equalizer structures are proposed for narrowband applications. Assuming that an U filter consists of a cyclotomic Polynomial (CP) prefilter and an all-Pole equalizer based on interpolated first order polynomial (IFOP), in the proposed method the prefilter and equalizer are simultaneously designed using mixed integer linear programming (MILP). The resulting filter is a cascaded filter with minimal complexity. In addition, MtP tries to minimize both computational complexity and phase response non-linearity. Design examples demonstrate that the proposed methods produce a more efficient cascaded prefilter-equalizer than existing methods.

본 연구는 협대역 응용 시스템을 위한 전처리기-등화기 구조의 여파기에서, 최소의 복잡도를 갖는 곱셈기 없는 디지털 IIR 여파기의 설계 방식을 제안한다. 제안하는 여파기는 순환 다항식 (cyclotomic polynomial (CP)) 여파기와 1차 내삽 다항식(interpolated second order polynomial (EOP))을 근간으로 하는 al1-pole 등화기로 구성 되며, 이 두 여파기가 동시에 혼합 정수 선형계획법(miked integer linear programming (MILP))으로 최적 설계된다. 설계된 여파기는 최소의 복잡도를 갖는 특성을 가지고 있다. 뿐만 아니라, 이 MILP 방식은 계산 복잡도와 위상 응답의 비선형 특성을 모두 최소화하도록 설계한다. 설계 예제를 통하여 제안된 설계 방식으로 설계된 여파기는 구현 요구사항을 만족하면서 기존의 설계 방식에 비하여 복잡도면에서 월등히 우수한 특성을 보임을 확인하였다.

Keywords

References

  1. R. Lyons, 'Interpolated narrowband lowpass FIR filters,' IEEE Signal Processing Magazine, vol. 20, pp 50-57, Jan. 2003 https://doi.org/10.1109/MSP.2003.1166628
  2. M. Wilbur, T. Davidson, and J. Reilly, 'Efficient Design of Oversampled NPR GDFT Filterbanks,' IEEE Trans. Signal Processing, vol.52, July 2004 https://doi.org/10.1109/TSP.2004.828936
  3. S. Netto, L. Barcellos, and P. Diniz, 'Efficient Design of Narrowband Cosine-Modulated Filter Banks Using a Two-Stage Frequency-Response Masking Approach,' Journal of Circuits, Systems, and Computers, vol. 12, pp. 1-12, Dec. 2003 https://doi.org/10.1142/S0218126603001057
  4. T. Saramaki, Y. Neuvo, and S. K. Mitra, 'Design of computationally efficient interpolated FIR filters,' IEEE Trans Circuits Syst., vol. 35, pp. 70-88, Jan. 1988 https://doi.org/10.1109/31.1701
  5. J. W. Adams and A. N. Willson, Jr., 'Some efficient digital prefilter structure,' IEEE Trans. Circuits and Syst. vol. 31, pp. 260-265, Mar. 1984 https://doi.org/10.1109/TCS.1984.1085492
  6. J. E. Cabezas and P. S. R. Diniz, 'FIR Filters using interpolated prefilters and equalizers,' IEEE Trans Circuits Syst., vol. 37, pp. 17-32, Jan. 1990 https://doi.org/10.1109/31.45687
  7. K. Sivaramakrishnan, I. Linscott, and G. Tyler, 'Design of Multiplierless Programmable Linear Phase Narrowband-Bandpass FIR Filters,' IEEE Int. Symp. Circuits and Systems, vol 3, pp. 493-496, May 2004 https://doi.org/10.1109/ISCAS.2004.1328791
  8. G. Jovanovic-Dolecek, V. Dolecek 'Method for narrowband minimum phase filter design,' Electronics Letters, vol. 37, pp 324-325, Mar. 2001 https://doi.org/10.1049/el:20010185
  9. R. J. Hartnett and G. F. Boudreaux-Bartels 'On the use of cyclotomic polynomial prefilters for efficient FIR filter design,' IEEE Trans. Signal Processing vol. 41 pp. 1766-1779, May 1993 https://doi.org/10.1109/78.215298
  10. H. Oh and Y. Lee, 'Design of Discrete Coefficient FIR and IIR Digital Filters with Prefilter-Equalizer Structure Using Linear Programming,' IEEE Trans, Circuits and Syst., vol. 47, pp. 562-565, June 2000 https://doi.org/10.1109/82.847076
  11. H. Dam, K. Teo, S. Nordebo, and A. Cantoni, 'The Dual Parameterization Approach to Optimal Least Square FIR Filter Design Subject to Maximum Error Constraints,' IEEE Trans. Signal Processing, vol. 48, pp. 2314-2320, Aug. 2000 https://doi.org/10.1109/78.852012
  12. Y. Lim, Y. Sun, and Ya Jun Yu, 'Design of Discrete-Coefficient FIR Filters on Loosely Connected Parallel Machines,' IEEE Trans. Signal Processing, vol. 50, pp. 1409-1416, June 2002 https://doi.org/10.1109/TSP.2002.1003064
  13. D. Li, Y. Lim, Y. Lian, and J. Song, 'A Polynomial-Time. Algorithm for Designing FIR Filters With Power-of-Two Coefficients,' IEEE Trans. Signal Processing, vol. 50, pp. 1935-1941, Aug. 2002 https://doi.org/10.1109/TSP.2002.800385
  14. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Presentice Hall Englewood NJ 1989
  15. W. L. Winston, Operations Research Applications and Algorithms, PWS-KENT, Boston, MA. 1991
  16. Using the CPLEX callable library and CPLEX mixed integer library, ILOG Inc. Mountain View, CA, 2005