Design of an Area-Efficient Reed-Solomon Decoder using Pipelined Recursive Technique

파이프라인 재귀적인 기술을 이용한 면적 효율적인 Reed-Solomon 복호기의 설계

  • 이한호 (인하대학교 정보통신공학부)
  • Published : 2005.07.01

Abstract

This paper presents an area-efficient architecture to implement the high-speed Reed-Solomon(RS) decoder, which is used in a variety of communication systems such as wireless and very high-speed optical communications. We present the new pipelined-recursive Modified Euclidean(PrME) architecture to achieve high-throughput rate and reducing hardware-complexity using folding technique. The proposed pipelined recursive architecture can reduce the hardware complexity about 80$\%$ compared to the conventional systolic-array and fully-parallel architecture. The proposed RS decoder has been designed and implemented with the 0.13um CMOS technology in a supply voltage of 1.2 V. The result show that total number of gate is 393 K and it has a data processing rate of S Gbits/s at clock frequency of 625 MHz. The proposed area-efficient architecture can be readily applied to the next generation FEC devices for high-speed optical communications as well as wireless communications.

본 논문은 무선 및 초고속 광통신등 다양한 통신 시스템에서 사용되는 고속 Reed-Solomon (RS) 복호기의 하드웨어 면적을 줄인 새로운 구조를 소개한다. 특히 folding 기술을 이용하여 높은 처리율(throughput)과 적은 하드웨어 복잡도(hardware complexity)를 가지고 있는 새로운 PrME (Pipelined recursive Modified Euclidean) 구조를 제안한다 제안된 PrME 구조는 일반적으로 사용되는 systolic-array 그리고 완전한 병렬(fully-parallel) 구조와 비교하여 하드웨어 복잡도를 약 80$\%$정도 줄일 수 있다. 제안된 RS 복호기는 1.2 V의 공급전압과 0.13-um CMOS 기술을 사용하여 설계하고 구현하였는데, 총 24,600개의 게이트수, 5-Gbit/s의 데이터 처리율과 클락 주파수 625 MHz에서 동작함을 보여준다. 제안된 면적 효율적인 PrME 구조에 기반한 RS 복호기는 초고속 광통신뿐만 아니라 무선통신을 위한 차세대 FEC구조 등에 바로 적용될 수 있을 것이다.

Keywords

References

  1. 'Forward Error Correction for Submarine System' Telecommunication Standardization Section, International Telecom. Union, ITU-T Recommendation G.975, Oct. 2000
  2. S. B. Wicker, 'Error Control Systems for Digital Communication and Storage,' Prentice Hall, 1995
  3. H. M. Shao, T. K. Truong, L. J. Deutsch, J. H. Yuen and I. S. Reed, 'A VLSI Design of Pipeline Reed-Solomon Decoder,' IEEE Trans. on Computers, Vol. C-34, No.5, pp.393-403, May. 1985 https://doi.org/10.1109/TC.1985.1676579
  4. W. Wilhelm, 'A New Scalable VLSI Architecture for Reed-Solomon Decoders' IEEE Jour. of Solid-state Circuits, Vol34, No.3, Mar. 1999 https://doi.org/10.1109/4.748191
  5. H. Lee, 'High-Speed VLSI Architecture for Parallel Reed-Solomon Decoder,' IEEE Trans. on VLSI Systems, Vol. 11, No.2, pp. 288-294, April. 2003 https://doi.org/10.1109/TVLSI.2003.810782
  6. H. Lee, 'An Area-Efficient Euclidean Algorithm Block for Reed-Solomon Decoder,' IEEE computer society Annual Symposium on VLSI, pp. 209-210, Feb. 2003
  7. D. V. Sarwate and N. R. Shanbhag, 'High-Speed Architecture for Reed-Solomon Decoders,' IEEE Trans. on VLSI Systems, Vol 9, No.5, pp.641-655, Oct. 2001 https://doi.org/10.1109/92.953498
  8. L. Song, M-L. Yu and M. S. Shaffer, '10 and 40-Gb/s Forward Error Correction Devices for Optical Communications,' IEEE Journal of Solid-State Circuits, Vol. 37, No. 11, pp. 1565-1573, Nov. 2002 https://doi.org/10.1109/JSSC.2002.803931