Intracellular Responses of Antibody-Producing H69K-NGD Transfectoma Subjected to Hyperosmotic Pressure

  • Bae, Sung-Won (Division of Cardiology, Samsung Medical Center & Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine) ;
  • Lee, Gyun-Min (Department of Biological Sciences, Korea Advanced Institute of Science and Technology)
  • Published : 2005.06.01

Abstract

When subjected to hyperosmotic pressure by NaCl addition, H69K-NGD transfectoma, like KR12H-2 transfectoma, displayed decreased specific growth rate (${\mu}$) and increased specific antibody productivity ($q_{Ab}$): Elevation of medium osmolality from 280 mOsm/kg to 415 mOsm/kg decreased ${\mu}$ by $79\%$ in batch cultures of H69K-NGD transfectoma, while it increased $q_{Ab}$ by $103\%$. However, unlike KR12H-2 tranfectoma, enhanced $q_{Ab}$ of H69K-NGD transfectoma at hyperosmolalities was not due to elevated levels of Ig mRNAs. In hyperosmotic cultures of H69K-NGD transfectoma, heavy-chain mRNA per cell was not enhanced with increasing osmolality. Hyperosmotic pressure was found to preferentially enhance immunoglobulin (Ig) translation rates of H69K-NGD transfectoma. However, under hyperosmotic pressure, the translation rate of Ig polypeptides was not enhanced as much as $q_{Ab}$. This result suggests that hyperosmotic pressure also influences the post-translational process. Taken together, the results obtained show that intracellular response of transfectomas to hyperosmotic pressure, in regard to the main intracellular steps of the antibody secretory pathway, is cell-line dependent.

Keywords

References

  1. Burton, D. R. 1991. Hwnan and mouse antibodies by repertoire cloning. Trends Biotechnol. 9: 169-175 https://doi.org/10.1016/0167-7799(91)90055-M
  2. Chung, J. Y, H. K. Ahn, S. W. Lim, Y. H. Sung, Y. W. Koh, S. K. Park, and G. M. Lee. 2003. Development of recombinant Chinese hamster ovary cell lines producing human thrombopoietin or its analog. J. Microbiol. Biotechnol. 13: 759- 766
  3. Ducommun, P., P.-A. Ruffieux, U. von Stokar, and I. Marison. 2001. The role of vitamins and amino acids on hybridoma growth and monoclonal antibody production. Cytotechnology 37: 65-73 https://doi.org/10.1023/A:1019956013627
  4. Hong, H. J., A. K. Kim, C. J. Ryu, S. S. Park, H. K. Chung, K. S. Kwon, K. L. Kim, J. Kim, and M. H. Han. 1992. Cloning and characterization of cDNAs coding for heavy and light chains of a monoclonal antibody specific for pre-S2 antigen of hepatitis B virus. Gene 121: 331-335 https://doi.org/10.1016/0378-1119(92)90139-G
  5. Jin, B. R., C. J. Ryu, S. S. Park, U. Namgung, H. J. Hong, and M. H. Han. 1993. Cloning, expression and characterization of a murine-human chimeric antibody with specificity for pre-S2 surface antigen of hepatitis B virus. Mol. lmmunol. 30: 1647-1654
  6. Kwak, B.-Y, B.-J. Kwon, C.-H. Kweon, and D.-H. Shon. 2004. Detection of Aspergillus, Penicillium, and Fusarium species by sandwich enzyme-linked immunosorbent assay using mixed monoclonal antibodies. J. Microbiol. Biotechnol. 14: 385-389
  7. Kim, N. S. and G. M. Lee. 2002. Response of Chinese hamster ovary cells to hyperosmotic pressure: Effect of Bcl-2 overexpression. J. Biotechnol. 95: 237-248 https://doi.org/10.1016/S0168-1656(02)00011-1
  8. Kim, N. S., K. H. Chang, B. S. Chung, S. H. Kim, J. H. Kim, and G. M. Lee. 2003. Characterization of humanized antibody produced by apoptosis-resistant CHO cells under sodium butyrate-induced condition. J. Microbiol. Biotechnol. 13: 926-936
  9. Laemmli, U. K. 1970. Cleavage of structual proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  10. Lee, G. M., A. Varma, and B. O. Palsson. 1991. Production of monoclonal antibody using free-suspended and immobilized hybridoma cells: Effect of serum. Biotechnol. Bioeng. 38: 821-830 https://doi.org/10.1002/bit.260380804
  11. Lee, M. S. and G. M. Lee. 2000. Hyperosmotic pressure enhances immunoglobulin transcription rates and secretion rates of KR12H-2 transfectoma. Biotechnol. Bioeng. 68: 260-268 https://doi.org/10.1002/(SICI)1097-0290(20000505)68:3<260::AID-BIT4>3.0.CO;2-M
  12. Marks, D. M. 2003. Equipment design considerations for large scale cell culture. Cytotechnology 42: 21-33 https://doi.org/10.1023/A:1026103405618
  13. Nuss, D. L. and G. Koch. 1976. Variation in the relative synthesis of immunoglobulin G and non-immunoglobulin G proteins in cultured MPC-11 cells with changes in the overall rate of polypeptide chain initiation and elongation. J. Mol. Biol. 102: 601-610 https://doi.org/10.1016/0022-2836(76)90337-5
  14. Oh, S. K. W., P. Vig, F. Chua, W. K. Teo, and M. G. S. Yap. 1993. Substantial overproduction of antibodies by osmotic pressure and sodium butyrate. Biotechnol. Bioeng. 42: 601-610 https://doi.org/10.1002/bit.260420508
  15. Oh, S. K. W., F. K. F. Chua, and A. B. H. Choo. 1995. Intracellular responses of productive hybridoma subjected to high osmotic pressure. Biotechnol. Bioeng. 46: 525-535 https://doi.org/10.1002/bit.260460605
  16. Oyass, K., T. E. Ellingsen, N. Dryset, and D. W. Levine. 1994. Hyperosmotic hybridoma cell cultures: Increased monoclonal antibody production with addition of glycine betaine. Biotechnol. Bioeng. 44: 991-998 https://doi.org/10.1002/bit.260440816
  17. Park, S. Y. and G. M. Lee. 1995. Enhancement of antibody productivity by immobilized hybridoma cell culture with hyperosmolar medium. Biotechnol. Bioeng. 48: 699-705 https://doi.org/10.1002/bit.260480618
  18. Ryu, J. S., M. S. Lee, and G. M. Lee. 2001. Effects of cloned gene dosage on the response of recombinant CHO cells to hyperosmotic pressure in regard to cell growth and antibody production. Biotechnol. Prog. 17: 993-999 https://doi.org/10.1021/bp010116e
  19. Sambrook, J., E. F. Fritisch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, U.S.A
  20. Dorner, A. J., L. C. Wasley, and R. J. Kaufman. 1989. Increased synthesis of secreted proteins induces expression of glucose-regulated proteins in butyrate-treated Chinese hamster ovary cells. J. Biol. Chem. 264: 20602-20607
  21. Parker, M. I., J. B. Haan, and W. Gevers. 1986. DNA hypermethylation in sodium butyrate-treated WI-38 fibroblasts. J. Biol. Chem. 261: 2786-2790
  22. Stryer, L. 1995. Biochemistry. W. H. Freeman, New York, U.S.A