Human ${\beta}$-Globin Second Intron Highly Enhances Expression of Foreign Genes from Murine Cytomegalovirus Immediate-Early Promoter

  • KANG MOONKYUNG (Vector Core A Inc. R&D Center) ;
  • KIM SEON-YOUNG (Korea Research Institute of Bioscience and Biotechnology) ;
  • LEE SUKYUNG (Vector Core A Inc. R&D Center) ;
  • LEE YOUNG-KWAN (Indang Institute of Molecular Biology, Inje University) ;
  • LEE JAEHO (Indang Institute of Molecular Biology, Inje University) ;
  • SHIN HYUN-SEOCK (School of Life Science and Biotechnology, Korea University) ;
  • KIM YEON-SOO (Indang Institute of Molecular Biology, Inje University)
  • Published : 2005.06.01

Abstract

To develop a highly efficient mammalian expression vector, a series of vectors were constructed based on the murine cytomegalovirus (MCMV) immediate-early (IE) promoter and human ${\beta}$-globin second intron. The resulting MCMV promoter was several-fold stronger than the HCMV promoter in various mammalian cell lines, such as the NIH3T3, Neuro-2a, 293T, and HT1080 cell lines, and was only slightly weaker than the HCMV promoter in HeLa and CHO cells. The inclusion of the human ${\beta}$-globin second intron behind the MCMV promoter or HCMV promoter markedly enhanced the promoter activity in various mammalian cell lines, and the resultant MCMV/Glo-I expression system was stronger than the HCMV promoter from 4.7- to 11.2-fold in every cell line tested. Also, the MCMV/Glo-I promoter induced a higher level of the VSV-G protein in a transiently transfected 293T cell line, which is useful for the production of recombinant retrovirus and lentivirus vectors.

Keywords

References

  1. Addison, C. L., M. Hitt, D. Kunsken, and F. L. Graham. 1997. Comparison of the human versus murine cytomegalovirus immediate early gene promoters for transgene expression by adenoviral vectors.J Gen. Virol. 78: 1653-1661 https://doi.org/10.1099/0022-1317-78-7-1653
  2. Aiba-Masago, S., S. Baba, R. Y. Li, Y. Shinmura, I. Kosugi, Y. Arai, M. Nishimura, and Y. Tsutsui. 1999. Murine cytomegalovirus immediate-early promoter directs astrocyte-specific expression in transgenic mice. Am. J. Pathol. 154: 735-743 https://doi.org/10.1016/S0002-9440(10)65320-5
  3. Baskar, J. F., P. P. Smith, G. S. Ciment, S. Hoffmann, C. Tucker, D. J. Tenney, A. M. Colberg-Poley, J. A. Nelson, and P. Ghazal. 1996. Developmental analysis of the cytomegalovirus enhancer in transgenic animals. J. Virol. 70: 3215-3226
  4. Baskar, J. F., P. P. Smith, G. Nilaver, R. A. Jupp, S. Hoffmann, N. J. Peffer, D. J. Tenney, A. M. Colberg-Poley, P. Ghazal, and J. A. Nelson. 1996. The enhancer domain of the human cytomegalovirus major immediate-early promoter determines cell type-specific expression in transgenic mice. J. Virol. 70: 3207-3214
  5. Boshart, M., F. Weber, G. Jahn, K. Dorsch-Hasler, B. Fleckenstein, and W. Schaffuer. 1985. A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 41 : 521-530 https://doi.org/10.1016/S0092-8674(85)80025-8
  6. Brinster, R. L., J. M. Allen, R. R. Behringer, R. E. Gelinas, and R. D. Palmiter. 1988. Introns increase transcriptional efficiency in transgenic mice. Proc. Natl. Acad. Sci. USA 85: 836-840
  7. Brondyk, B. 1994. Promega Notes 49
  8. Buchman, A. R. and P. Berg. 1988. Comparison of introndependent and intron-independent gene expression. Mol. Cell. Biol. 8: 4395-4405 https://doi.org/10.1128/MCB.8.10.4395
  9. Burtler, V. A. 1996. Points to consider on plasmid DNA vaccines for preventive infectious disease indications. CBER draft guidelines
  10. Choi, E., E. Kim, Y. Oh, K. Shin, H. Kim, and C. Kim. 2002. Expression of rota virus capsid proteins VP6 and VP7 in mammalina cells using Simliki forest virus-based expression system. J. Microbial. Biotechnol. 12: 463-469
  11. Choi, T., M. Huang, C. Gorman, and R. Jaenisch. 1991. A generic intron increases gene expression in transgenic mice. Mol. Cell. Biol. 11: 3070-3074 https://doi.org/10.1128/MCB.11.6.3070
  12. Dijkema, R., P. H. van der Meide, P. H. Pouwels, M. Caspers, M. Dubbeld, and H. Schellekens. 1985. Cloning and expression of the chromosomal immune interferon gene of the rat. EMBO J. 4: 761-767
  13. Evans, M. J. and R. C. Scarpulla. 1989. Introns in the 3'-untranslated region can inhibit chimeric CAT and beta-galactosidase gene expression. Gene 84: 135-142 https://doi.org/10.1016/0378-1119(89)90147-9
  14. Gorman, C. M., G. T. Merlino, M. C. Willingham, I. Pastan, and B. H. Howard. 1982. The Rous sarcoma virus long terminal repeat is a strong promoter when introduced into a variety of eukaryotic cells by DNA-mediated transfection. Proc. Natl. Acad. Sci. USA 79: 6777-6781
  15. Huang, M. T. and C. M. Gorman. 1990. Intervening sequences increase efficiency of RNA 3' processing and accumulation of cytoplasmic RNA. Nucleic Acids Res. 18: 937 -947 https://doi.org/10.1093/nar/18.4.937
  16. Huang, M. T. and C. M. Gorman. 1990. The simian virus 40 small-t intron, present in many common expression vectors, leads to aberrant splicing. Mol. Cell. Biol. 10: 1805-1810 https://doi.org/10.1128/MCB.10.4.1805
  17. Kim, D. W., T. Uetsuki, Y. Kaziro, N. Yamaguchi, and S. Sugano. 1990. Use of the human elongation factor 1 alpha promoter as a versatile and efficient expression system. Gene 91: 217 -223 https://doi.org/10.1016/0378-1119(90)90091-5
  18. Kim, E., D. Kim, H. Hwang, J. Yoon, Y. Yoon, and K. Baek. 2004. High-level expression of recombinant human interleukin-2 in Chinese hamster ovary cells using the expression system containing transcription terminator. J. Microbiol. Biotechnol. 14: 810-815
  19. Kim, Y. S. and R. Risser. 1993. TAR-independent transactivation of the murine cytomegalovirus major immediate-early promoter by the Tat protein. J. Virol. 67: 239-248
  20. Lafemina, R. L. and G. S. Hayward. 1988. Differences in cell-type-specific blocks to immediate early gene expression and DNA replication of human, simian and murine cytomegalovirus. J. Gen. Virol. 69: 355-374 https://doi.org/10.1099/0022-1317-69-2-355
  21. Lee, Y., E. J. Park, S. S. Yu, D. K. Kim, and S. Kim. 2000. Improved expression of vascular endothelial growth factor by naked DNA in mouse skeletal muscles: Implication for gene therapy of ischemic diseases. Biochem. Biophys. Res. Commun. 272: 230-235 https://doi.org/10.1006/bbrc.2000.2758
  22. Palmiter, R. D., E. P. Sandgren, M. R. Avarbock, D. D. Allen, and R. L. Brinster. 1991. Heterologous introns can enhance expression of trans genes in mice. Proc. Natl. Acad. Sci. USA 88: 478-482
  23. Petitclerc, D., J. Attal, M. C. Theron, M. Bearzotti, P. Bolifraud, G. Kann, M. G. Stinnakre, H. Pointu, C. Puissant, and L. M. Houdebine. 1995. The effect of various introns and transcription terminators on the efficiency of expression vectors in various cultured cell lines and in the mammary gland of transgenic mice. J. Biotechnol. 40: 169-178 https://doi.org/10.1016/0168-1656(95)00047-T
  24. Rotondaro, L., A. Mele, and G. Rovera. 1996. Efficiency of different viral promoters in directing gene expression in mammalian cells: Effect of 3'-untranslated sequences. Gene 168: 195-198 https://doi.org/10.1016/0378-1119(95)00767-9
  25. Yew, N. S., D. M. Wysokenski, K. X. Wang, R. J. Ziegler, J. Marshall, D. McNeilly, M. Cherry, W. Osburn, and S. H. Cheng. 1997. Optimization of plasmid vectors for high-level expression in lung epithelial cells. Hum. Gene Ther. 8: 575-584 https://doi.org/10.1089/hum.1997.8.5-575