Influence of Nicorandil on Aortic Strip's Contractility and Blood Pressure of the Rat

  • Lim, Dong-Yoon (Department of Pharmacology, College of Medicine, Chosun University) ;
  • Kim, Yong-Jik (Department of Pharmacology, College of Medicine, Chosun University) ;
  • Hong, Soon-Pyo (Department of Internal Medicine (Cardiology), Chosun University)
  • Published : 2005.03.01

Abstract

The present study was conducted to investigate the effects of nicorandil on arterial blood pressure and vascular contractile responses in the normotensive anesthetized rats and to establish the mechanism of action. Nicorandil (30~300 ${\mu}g/kg$) given into a femoral vein of the normotensive anesthetized rat produced a dose-dependent depressor response. These nicorandil-induced hypotensive responses were not affected by pretreatment with atropine (3.0 mg/kg, i.v.) or propranolol (2.0 mg/kg, i.v.), while markedly inhibited in the presence of chlorisondamine (1.0 mg/kg, i.v.) or phentolamine (2.0 mg/kg, i.v.). Futhermore, after the pretreatment with 4-aminopyridine (1.0 mg/kg/30 min, i.v.) or glibenclamide (50.0 ${\mu}g/kg$/30min) into a femoral vein made a significant reproduction in pressor responses induced by intravenous norepinephrine. In he isolated rat aortic strips, both phenylephrine (10$^{-5}$ M)- and high potassium (5.6 ${\times}\;10^{-2}$ M)-inducedcontractile responses were dose-dependently depressed in the presence of nicorandil (25~100 ${\mu}M$). Collectively, these experimental results demonstrate that intravenous nicorandil causes a dose-dependent depressor action in the anesthetized rat at least partly through the blockade of vascular adrenergic ${\alpha}_1$-receptors, in addition to the well-known mechanism of potassium channel opening-induced vasorelaxation.

Keywords

References

  1. Ablad, B., Borg, K. O., Carlsson, E., Johnson, G., Malmfors, L. and Regardh, C. G. (1975). A survey of the pharmacological properties of metoprolol in animals and man. Acta. Pharmacol. Toxicol.(Copenh) 36(5), 7-23
  2. Akai, K., Wang, Y., Sato, K., Sekiguchi, N., Sugimura, A., Kumagai, T., Komaru, T., Kanatsuka H. and Shirato, K. (1995). Vasodilatory effect of nicorandil on coronary arterial microvessels: Its dependency on vessel size and the involvement of the ATP-sensitive potassium channels. J. Cardiovasc. Pharmacol. 26, 541-547 https://doi.org/10.1097/00005344-199510000-00006
  3. Arena, J. P. and Kass, R. S. (1989). Activation of ATP-sensitive $K^+$ channels in heart cells by pinacidil: dependence on ATP. Am. J. Physiol. 257, H2092-H2096
  4. Aschroft, F. M. (1990). Adenosine 5'-triphosphate-sensitive potassium channels. Annu. Rev. Neurosci. 11, 97-118 https://doi.org/10.1146/annurev.ne.11.030188.000525
  5. Bevan, J. A. (1982). Selective action of diltiazem on cerebral vascular smooth muscle in the rabbit: antagonism of extrinsic but not intrinsic maintained tone. Am. J. Cardiol. 46, 519-524
  6. Bolton, T. M. (1979). Mechanisms of action of transmitters and other substances on smooth muscle. Physiol. Rev. 3, 606-718
  7. Brayden, J. E. (1996). Potassium channels in vascular smooth muscle. Clin. Exp. Pharmacol. Physiol. 23, 1069-1076 https://doi.org/10.1111/j.1440-1681.1996.tb01172.x
  8. Chujo, M., Mori, H., Tanaka, E., Nakazawa, H. and Okino, H. (1994). Inhibitory effects of nicorandil on sympathetic coronary vasoconstriction. Cardiovasc. Res. 28(6), 917-22 https://doi.org/10.1093/cvr/28.6.917
  9. Constantine, J. W., Mcshane, W. K., Scriabine, A. and Hess, H. J. (1973). Analysis of the hypotensive action of prazosin. In Hypertension: Mechanisms and Management (G. Onesti, K. E. Kim, J. H. Moyer, Ed.), pp. 429. Grume & Stratton Inc., New York
  10. Cook, N. S. (1988). The pharmacology of potassium channel and their therapeutic potential. Trends. Pharmacol. Sci. 9, 21-28 https://doi.org/10.1016/0165-6147(88)90238-6
  11. Davie, C. S., Kubo, M. and Standen, N. B. (1998). Potassium channel activation and relaxation by nicorandil in rat small mesenteric arteries. Br. J. Pharmacol. 125(8), 1715-1725 https://doi.org/10.1038/sj.bjp.0702232
  12. Dube, G. P., Baik, Y. H. and Schwartz, A. (1985). Effects of novel calcium channel agonist dihydropyridine analogue, Bay K 9644, on pig coronary artery: Biphasic mechanical response and paradoxical potentiation of contraction by diltiazem and nimodipine. J. Cardiovasc. Pharmacol. 7, 377-389 https://doi.org/10.1097/00005344-198503000-00025
  13. Dube, G. P., Baik, Y. H., Van Breemen, C. and Schwartz, A. (1988). Effects of isosorbide dinitrate and diltiazem on $Ca^{2+}$ flux and contraction in artery. European J. Pharmacol. 145, 39-47 https://doi.org/10.1016/0014-2999(88)90346-9
  14. Edwards, G. and Weston, A. H. (1990). Structure-activity relationships of $K^+$ channel openers. Trends. Pharmacol. Sci. 11, 417-422 https://doi.org/10.1016/0165-6147(90)90149-3
  15. Edwards, G. and Weston, A. H. (1993). The pharmacology of ATP-sensitive potassium channels. Annu. Rev. Pharmacol. Toxicol. 33, 597-637 https://doi.org/10.1146/annurev.pa.33.040193.003121
  16. Endoh, M., and Taira, N. (1983). Relationship between relaxation and cyclic GMP formation caused by nicorandil in canine mesenteric arteries. Naunyn-Schmiedeberg's Arch. Pharmacol. 322, 319 https://doi.org/10.1007/BF00508349
  17. Findlay, I. (1987). ATP-sensitive $K^+$ channels in rat ventricular myocytes are blocked and inactivated by internal divalent cations. Pflug. Arch. 410, 313-320 https://doi.org/10.1007/BF00580282
  18. Fink, R. H. A. and Stephenson, D. G. (1987). $Ca^{2+}$-movements in muscle modulated by the state of $K^+$ -channels in the sarcoplasmic reticulum membranes. Pflugers Arch. 409, 374-380 https://doi.org/10.1007/BF00583791
  19. Fleckenstein, A. (1977). Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Ann. Rev. Pharmacol. Toxicol. 17, 149-166 https://doi.org/10.1146/annurev.pa.17.040177.001053
  20. Forestier, C., Pierrard, J. and Vivaudou, M. (1996). Mechanism of action of K channel openers on skeletal muscle $K_{ATP}$ channels. Interactions with nucleotides and protons. J. Gen. Physiol. 107, 489-502 https://doi.org/10.1085/jgp.107.4.489
  21. Frampton, J., Buckley M. M. and Fitton, A. (1992). Nicorandil. A review of its pharmacology and therapeutic effects in angina pectoris. Drugs 44, 625-655 https://doi.org/10.2165/00003495-199244040-00008
  22. Freis, E. E., Mackey, J. D. and Oliver, W. F. (1951). The effect of 'sympatholytic' drugs on the cardiovascular responses to epinephrine and norepinephrine in man. Cir. Res. 3, 254
  23. Furukawa, K., Itoh, I., Kajiwara, M., Kitamura, K., Suzuki, H., Ito Y. and Kuriyama, H. (1981). Effects of 2-nicotinarnidoethyl nitrate on smooth muscle cells and on adrenergic transmission in guinea-pig and porcine mesenteric arteries. J. Pharmacol. Exp. Ther. 218, 260
  24. Goldschmidt, M., Landzberg B. R. and Frishman, W. H. (1996). Nicorandil. A potassium channel opening drug for treatment of ischemic heart disease. J. Clin. Pharmacal. 36, 559-572 https://doi.org/10.1002/j.1552-4604.1996.tb04219.x
  25. Hamada, E., Takikawa, R., Ito, H., Iguchi, M., Terano, A., Sugimoto, T. and Kurachi, Y. (1990). Glibenclamide specifically blocks ATP-sensitive $K^+$ channel current in atrial myocytes of guinea pig heart. Jpn. J. Pharmacal. 54, 473-477 https://doi.org/10.1254/jjp.54.473
  26. Hiraoka, M. and Fan, Z. (1989). Activation of ATP-sensitive outward $K^+$ current by nicorandil (2-nicotinamidoethyl mitrate) in isolated ventricular myocytes. J. Pharmacal. Exp. Ther. 250, 278-285
  27. Holzmann, S. (1983). cGMP as a possible mediator of coronary arterial relaxation by nicorandil (SG-75). J. Cardiovasc. Pharmacal. 5, 364-370 https://doi.org/10.1097/00005344-198305000-00004
  28. Holzmann, S., Kukovetz, W. R., Braida, C. and Poch, G (1992). Pharmacological interaction experiments differentiate between glibenclamide-sensitive potassium channels and cyclic GMP as components of vasodilation by nicorandil. Eur. J. Pharmacol. 215, 1-7 https://doi.org/10.1016/0014-2999(92)90600-9
  29. Horie, M., Irisawa, H. and Noma, A. (1987). Voltage-dependent magnesium block of adenosine-triphosphate-sensitive potassium channels in guinea-pig ventricular cells. J. Physiol. 387, 251-272 https://doi.org/10.1113/jphysiol.1987.sp016572
  30. Imai, S. and Kitagawa. (1981). A comparison of the differential effects of nitroglycerin, nifedipine, and papaverine on contractures induced in vascular and intestinal smooth muscle by potassium and lanthanum. Jap. J. Pharmacol. 31, 193 https://doi.org/10.1254/jjp.31.193
  31. Ito, Y., Kitamura, K. and Kuriyama, H. (1980a). Actions of nitroglycerin on the membrane and mechanical properties of smooth muscles of the coronary artery of the pig. Br. J. Pharmacol. 70, 197-204 https://doi.org/10.1111/j.1476-5381.1980.tb07925.x
  32. Ito, Y., Kitamura, K. and Kuriyama, H. (1980b). Nitroglycerin and catecholamine actions on smooth muscle cells of cannine coronary artery. J. Physiol. (London) 309, 171-183 https://doi.org/10.1113/jphysiol.1980.sp013502
  33. Itoh, T., Furukawa, K., Kajiwara, M., Kitamura, K., Suzuki, H., Ito, Y. and Kuriyama, H. (1981). Effects of 2-nicotinamidoethyl nitrate on smooth muscle cells and on adrenergic transmission in the guinea-pig arid porcine mesenteric arteries. J. Pharmacol. Exp. Ther. 218(1), 260-270
  34. Kawai, Y., Hayashi, Y., Ito, I., Kamibayashi, T., Takada, K., Kagawa, K., Yamatodani, A. and Mashimo, T. (2002). Nicorandil prevents epinephrine-induced arrhythmias in halothane-anesthetized rats by nitric oxide-dependent mechanism. Naunyn Schmiedebergs Arch. Pharmacol. 366 (6), 522-527 https://doi.org/10.1007/s00210-002-0644-9
  35. Kim, J. M., Park, K. O. and Baik, Y. H. (1989). Effects of antiepileptic drugs on contractile responses of vascular smooth muscles. Chonnam J. Med. Sci. 2(1), 50-59
  36. Kimura, M., Nojima, H., Muroi, M. and Kimura, I. (1991). Mechanism of the blocking action of ${\beta}$-nicorandil on the nicotinic acetylcholine receptor channel in mouse skeletal muscles. Neuropharmacology 30, 835-841 https://doi.org/10.1016/0028-3908(91)90117-T
  37. Kukovetz, W. R., Holzmann, S., Braida C. and Poch, G. (1991). Dual mechanism of the relaxing effect of nicorandil by stimulation of cGMP formation and by hyperpolarisation. J. Cardiovasc. Pharmacol. 17, 627-633 https://doi.org/10.1097/00005344-199104000-00016
  38. Kwak, Y. G., Park, S. K., Kang, H. S., Kim, J. S., Chae, S. W., Cho, K. P., Yoo, S. E. and Kim, D. (1995). KR-30450, a newly synthesized benzopyran derivative, activates the cardiac ATP-sensitive $K^+$ channel. J. Pharmacol. Exp. Ther. 275, 807-812
  39. Liu, Y., Ren, G., O'Rourke, B., Marban, E. and Seharaseyon, J. (2001). Pharmacological comparison of native mitochondrial K(ATP) channels with molecularly defined surface K(ATP) channels. Mol. Pharmacol. 59(2), 225-230 https://doi.org/10.1124/mol.59.2.225
  40. Longman, S.D. and Hamilton, T.C., (1992). Potassium channel activator drugs: mechanism of action, pharmacological properties, and therapeutic potential. Med. Res. Rev. 12, 73-148 https://doi.org/10.1002/med.2610120202
  41. Meisheri, K. D., Cipkus-Dubray, L. A., Hosner J. M. and Khan, S. (1991). Nicorandil-induced vasorelaxation: Functional evidence for $K^+$ channel-dependent and cyclic GMP-dependent components in a single vascular preparation. J. Cardiovasc. Pharmacol. 17, 903 https://doi.org/10.1097/00005344-199106000-00007
  42. Nelson, M. T. and Quayle, J. M. (1995). Physiological roles and properties of potassium channels in arterial smooth muscle. Am. J. Physiol. 268, C799-C822 https://doi.org/10.1152/ajpcell.1995.268.4.C799
  43. Ogino, K., Kinugawa, T., Noguchi, N., Kitamura, H., Matsumoto, T., Miyakoda, H., Kotake, H. and Mashiba, H. (1992). Suppression of sympathetic nervous system activity by nicorandil during exercise. Gen. Pharmacol. 23(3), 325-329 https://doi.org/10.1016/0306-3623(92)90090-7
  44. Ohya, Y., Setoguchi, M., Fujii, K., Nagao, T, Abe, I. and Fujishima, M. (1996). Impaired action of levcromakalim on ATP-sensitive $K^+$ channels in mesenteric artery cells from spontaneously hypertensive rats. Hypertension 27, 1234-1239 https://doi.org/10.1161/01.HYP.27.6.1234
  45. Sanguinetti, M. C., Scott, A. L., Zingaro, G. L. and Siegl, P. K. (1988). BRL 34915 (cromakalim) activates ATP-sensitive $K^+$ current in cardiac muscle. Proc. Natl. Acad. Sci. USA 85, 8360-8364
  46. Schwartz, A. and Taira, N. (1983). Calcium channel-blocking drugs: A novel intervention for the treatment of cardiac disease. eire. Res. (American Heart association Monograph) 52, 1-183
  47. Schwartz, A. and Triggle, D. J. (1984). Cellular action of calcium blocking drugs. Ann. Rev. Med. 35, 325-339 https://doi.org/10.1146/annurev.me.35.020184.001545
  48. Shen, W. K., Tung, R. T., Machulda, M. M. and Kurachi, Y. (1991). Essential role of nucleotide diphosphates in nicorandil-mediated activation of cardiac ATP-sensitive $K^+$ channels. A comparison with pinacidil and lemakalim. Cire. Res. 69, 1152-1158 https://doi.org/10.1161/01.RES.69.4.1152
  49. Shibata, S., Satake, N., Takagi, T, Kerfoot, F. and Suh, T. K. (1984). Relaxing effect of nicorandil (N-2-(hydroxyethyl)nicotinamide nitrate), a new anti-angina agent, on the isolated vascular smooth muscle. Eur. J. Pharmacol. 99(23), 219-26 https://doi.org/10.1016/0014-2999(84)90244-9
  50. Smith, J. M. and Wahler, G M. (1996). ATP-sensitive potassium channels are altered in ventricular myocytes from diabetic rats. Mol. Cell. Biochem. 158, 43-51
  51. Tallarida, R. J. and Murray, R. B. (1987). Manual of pharmacologic calculation with computer programs. 2nd Ed. New York, Speringer-Verlag, pp. 132
  52. Thuringer, D., Cavero, I. and Coraboeuf, E. (1995). Time-dependent fading of the activation of $K_{ATP}$ channels, induced by aprikalim and nucleotides, in excised membrane patches from cardiac myocytes. Br. J. Pharmacol. 115, 117-127 https://doi.org/10.1111/j.1476-5381.1995.tb16328.x
  53. Tuttle, J. B., Spitsbergen, J. M., Stewart, J. S., McCarty, R. M. and Steers, W. D. (1995). Altered signalling in vascular smooth muscle from spontaneously hypertensive rats may link medial hypertrophy, vessel hyperinnervation and elevated nerve growth factor. Clin. Exp. Pharmacol. Physiol. 1, S117-S119
  54. Watkins, R. W. and Davidson, I. W. F. (1980). Comparative effects of nitroprusside and nitrogiycerin: Actions on phasic and tonic components of arterial smooth muscle contraction. European J. Pharmacol. 62, 191-200 https://doi.org/10.1016/0014-2999(80)90275-7
  55. Zhou, Q., Satake, N. and Shibata, S. (1995). The inhibitory mechanisms of nicorandil in isolated rat urinary bladder and femoral artery. Eur. J. Pharmacol. 273, 153-159 https://doi.org/10.1016/0014-2999(94)00685-Z