계면활성제를 부가하여 전기방사한 PLGA 부직포의 습윤성 개선

Improvement of Wettability of PLGA Nonwoven Mats Electrospun from a Surfactant-containing Solution

  • 박희천 (전북대학교 바이오나노시스템공학과) ;
  • 길명섭 (전북대학교 헬스케어기술개발사업단) ;
  • 김학용 (전북대학교 섬유공학과) ;
  • 이덕래 (전북대학교 섬유공학과) ;
  • 최경은 (전주교육대학교 실과교육과)
  • Park, Heui-Chon (Department of Bio-nano System Engineering, Chonbuk National) ;
  • Khil,, Myung-Seob (Center for Healthcare Technology Development, Chonbuk National University) ;
  • Kim, Hak-Yong (Department of Textile Engineering, Chonbuk National University) ;
  • Lee, Douk-Rae (Department of Textile Engineering, Chonbuk National University) ;
  • Choi, Kyung-Eun (Department of Practical Art Education, Jeonju National University)
  • 발행 : 2005.06.01

초록

The effects of surfactant on electrospinnability and wettability of electrospun PLGA nonwoven mats were investigated. For PLGA, a mixtured solvent of tetrahydrofuran (THF) and N,N-dimethylformamide (DMF) was used to dissolve the polymer. Sodium dodecyl sulfate(SDS), a surfactant, was added to PLGA solution for electrospinning. The water absorption capacity of resulting fibers increased as the content of surfactant increased.

키워드

참고문헌

  1. R. Langer and J. P. Vacanti, 'Tissue Engineering', Science, 1993, 260, 920-926 https://doi.org/10.1126/science.8493529
  2. D. J. Mooney, L. Cima, and R. Langer, 'Principles of Tissue Engineering and Reconstruction Using Polymer-Cell Constructs', Mat Res Soc Symp Prop, 1992, 252, 345-352
  3. S. J. Holland, B. J. Tighe, and P. L. Gould, 'Polymers for Biodegradable Medical Devices: 1. The Potential of Polyesters as Controlled Macromolecular Release Systems', J Controlled Release, 1986, 4, 155-180 https://doi.org/10.1016/0168-3659(86)90001-5
  4. G. Khang, J. H. Jeon, J. W. Lee, S. C. Cho, and H. B. Lee, 'Cell and Platelet Adhesions on Plasma Glow Discharge-treated Poly(lactide-co-glycolide)', Bio-Med Mater Eng, 1997, 7, 357-368
  5. Q. Liu, R. Joost, D. Wijn, K. D. Groot, and A. C. Blitterswijk, 'Surface Modification of Nano-Apatite by Grafting Organic Polymer', Biomaterials, 1998, 19, 1067-1072 https://doi.org/10.1016/S0142-9612(98)00033-7
  6. J. M. Deitzel, J. D. Kleinmeyer, J. K. Hirvonen, and N. C. Beck Tan, 'Controlled Deposition of Electrospun Poly (ethylene oxide) Fibers', Polymer, 2001, 42, 8163-8170 https://doi.org/10.1016/S0032-3861(01)00336-6
  7. G. I. Taylor, 'Electrically Driven Jets', Proc R Soc London Ser A, 1969, 313, 453-475
  8. L. G. Cima, J. P. Vacanti, D. Ingber, D. Mooney, and R. Langer, 'Tissue Engineering by Cell Transplantation Using Degradable Polymer Substrates', J Biomech Eng, 1991, 113, 143-151 https://doi.org/10.1115/1.2891228
  9. H. L. Wald, G. Sarakinos, M. D. Lyman, A. G. Mikos, J. P. Vacanti, and R. Langer, 'Cell Seeding in Porous Transplantation Devices', Biomaterials, 1993, 14, 270-278 https://doi.org/10.1016/0142-9612(93)90117-K
  10. H. J. Kim, Y. H. Jung, M. S. Khil, H. Y. Kim, and H. J. Bang, 'A Study on Characterization of Nonwoven Mats via Electrospinning under Vacuum', J Korean Fiber Soc, 2004, 41, 424-432
  11. A. G. Mikos, G. Sarakinos, S. M. Leite, J. P. Vacanti, and R. Langer, 'Laminated Three-Dimensional Biodegradable Foams for Use in Tissue Engineering', Biomaterials, 1993, 14(5), 323-330 https://doi.org/10.1016/0142-9612(93)90049-8
  12. C. E. Holy, S. M. Dang, J. E. Davies, and M. S. Shoichet, 'In Vitro Degradation of a Novel Poly(lactide-co-glycolide) 75/25 Foam', Biomaterials, 1999, 20, 1177-1185 https://doi.org/10.1016/S0142-9612(98)00256-7