LM1 기반 제어기 설계를 위한 간단한 지침서

  • 최한호 (동국대학교 전기공학과)
  • Published : 2005.06.01

Abstract

Keywords

References

  1. J.C. Willems, 'Least squares stationary optimal control and the algebraic Riccati equation,' IEEE Trans. Automat. Contr., vol. 16, pp. 621 -634, 1971 https://doi.org/10.1109/TAC.1971.1099831
  2. S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in system and Control Theory, Philadelphia, SIAM, 1994, http://www.stanford.edu/~boyd/lmibook/
  3. L. El Ghaoui and S. Niculescu, 'Robust decision problems in engineering-A linear matrix inequality approach,' in Advances in Linear Matrix Inequality Methods in Control, L. El Ghaoui and S. Niculescu, eds. SIAM, 2000, pp. 3-37
  4. R.E. Skelton and T. Iwasaki, 'Increased roles of linear algebra in control education,' IEEE Control Systems Magazine, no.4, pp. 76-90, 1995
  5. P. Gahinet, A. Nemirovski and A.J. Laub, LMI Control Toolbox User's Guide, Natic, MA:The MathWorks Inc., 1995
  6. L. El Ghaoui, F. Oustry, and M. AitRami, 'A cone complementary linearization algorithm for static output-feedback and related problems,' IEEE Trans. Automat. Contr., vol. 42, pp. 1171-1176, 1997 https://doi.org/10.1109/9.618250
  7. U. Shaked, 'An LPD approach to robust $H_2\;and\;H_{\infty}$ static output-feedback design,' IEEE Trans. Automat. Contr., vol. 48, pp. 866-872, 2003 https://doi.org/10.1109/TAC.2003.811270
  8. B.L. Walcott and S.H. Zak, 'State observation of nonlinear uncertain dynamical systems,' IEEE Trans. Automat. Contr., vol. 32, no. 2, pp. 166-170, 1987 https://doi.org/10.1109/TAC.1987.1104530
  9. 최한호, '슬라이딩 모드 관측기 설계를 위한 선형 행렬부등식 접근법,' 제어 자동화 시스템공학 논문지, 제11권, 1호, pp. 9-12, 2005
  10. C. Scherer and S. Weiland, Linear Matrix Inequalities in Control, http://www.cs.ele.tue.nl /SW eiland/lmi.html
  11. A. Packard, K. Zhou, P. Pandey, and G. Becker, 'A collection of robust control problems leading to LMI's,' In Proc. of the IEEE CDC, pp. 1245-1250, Brighton, England, Dec. 1991
  12. Y. Ebihara, T. Hagiwara, 'Structured controller synthesis using LMI and alternating projection method,' in Proc. of the IEEE CDC, pp. 5632-5637, Maui, Hawaii USA, Dec. 2003
  13. J.G. VanAntwerp, R.D. Braatz, 'A tutorial on linear and bilinear matrix inequalities,' Journal of Process control, vol. 10, pp. 363-385, 2000 https://doi.org/10.1016/S0959-1524(99)00056-6