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Abstract. In this paper, we propose a nonparametric test procedure for the
multivariate, grouped and right censored data for two sample problem. For the
construction of the test statistic, we use the linear rank statistics for each component
and apply the permutation principle for obtaining the null distribution. For the large
sample case, the asymptotic distribution is derived under the null hypothesis with the
additional assumption that two censoring distributions are also equal. Finally, we
illustrate our procedure with an example and discuss some concluding remarks. In
appendices, we derive the expression of the covariance matrix and prove the
asymptotic distribution.
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1. INTRODUCTION

In survival analysis, very often, statisticians have to deal with the multivariate data,
which record more than one kind of event on each subject for the duration of observation.
Or sometimes observations may be records of successive event times for the same
outcome type. Various types of survival multivariate data have been introduced and
discussed in Hougaard (2000). For these data, a lot of nonparametric test procedures have
been proposed for comparing equality of distributions between two populations (cf. Puri
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and Sen, (1971). However sometimes, all or any component(s) of the observation may be
right censored for various reasons. In this case, Wei and Lachin (1984) proposed a class of
nonparametric tests based on the univariate generalized log-rank type of statistics for each
component. Also Park and Desu (1998) and Park (2002) considered some extensions of
the two types of median tests for this situation. In this research, however, we consider the
case that the observation for the object may be conducted periodically with some fixed
time interval or irregularly but with fixed time schedule during the experiment. Therefore
the form of data may be categorized along with the time intervals. We call those as the
grouped data. In other words, even though the underlying distributions are continuous, the
data sets have been changed as a discrete type. For these data, one may apply any one
among the usual nonparametric test procedures which have been developed for the untied-
value case by adjusting rank or score for the tied value as an ad hoc approach. However
Puri and Sen (1985) proposed a class of nonparametric tests in the linear model for the
grouped data. Also Park (1993) considered nonparametric tests for the right censored data.
In this paper, we consider proposing a nonparametric test procedure explicitly for the
multivariate and right censored data.

2. MULTIVARIATE TESTS FOR GROUPED AND RIGHT
CENSORED DATA

Let {X, =(X,,K ,X,.,,')T,i =1K,m} and {¥, =(Y,.K ,de)T,j =1K ,n} be
two independent d -variate random samples from populations with distribution functions
F and G, respectively. (-)T means the transpose of a vector or matrix. We assume that
all the components of each observation vector have non-negative values since we consider

the life time random vector. Then it is of interest to test H:F' = G assuming that F' and

G are unknown but continuous.

Since the right censoring schemes must be involved for all components or some
component, for each i=1K m , j=1K,n and k=1K ,d one may observe
Uy =min(X,,C,) , 7,=I1X,<C,) , ij =min(ij7Djk) and y, =
I(Y, <D,), where {C,=(C,,K,C,) ,i=LK,m} and {D, =(D,,K,D,)",
j =1K ,n} are the independent censoring random samples which are also independent
of X's and Y's with unknown arbitrary distribution functions Q and O, respectively.

Furthermore since we are concerned with the grouped data with finite number of intervals
over the positive half real line for each component, each observation for each component

may be represented as (U, ,7,, )and (Vj; »¥ &), where for each k = 1K ,d
Up =D 1{Z)y and V), =D 1}Z,
1=0 1=0

where I/ ={z;a,"$z<a,"+l}, I=0K,s, with 0=a} <a <K <afk <ad =

sp+l T

e o}

and
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Based on these data, we consider to propose a nonparametric test procedure for
testing H , :F = G . For this purpose, let N =m+nand F,,, any consistent estimate of

F, which is the k th marginal distribution function of F' based on the combined sample.
Also let ¢, and c,,, be the scores of the uncensored and censored observations for the

k th component in the [ th subinterval such as

1 Fiew(@r41) 1 1
Cy = wydu and ¢, = ——— w)du,
" Fo () — Fy(a) e P - Fy(a) f":nv(a,)¢( )

where @(®) is a square integrable function and can be chosen with the consideration of
power. One may choose @(u) = — fI(ET () f,(F; ' (w)) for 0 <u <1 if he or she has
any knowledge about underlying distribution 7', where f is the density of F, and f}
is the first derivative of f, for each k = 1K ,d. Also F,' is the inverse image of F, .
Therefore we note that the score functions may be completely determined by ¢ and the
choice of ¢ may depend on the underlying distribution function. As an example, for a

logistic distribution, ¢(u) = 2u —1. In later chapter, we will discuss more about scores.

For the univariate case, Park(1993) proposed a class of locally most powerful tests based
on the following linear rank statistics

Sw = Z {Tikclkzzikz +(1 -7 )l } 2.1

for testing Hy : F, = G,, where G, is the k th marginal distribution of G . Park used

the likelihood ratio principle to derive the linear rank statistics (2.1). In this study, we will
use the permutation principle (cf. Good, 2000) for the development of the test procedure.
Then we note that the resulting tests become conditional and we have to assume that

Qr = Q. under H;:F =G . Let P, be the permutation distribution function under H,
based on the two samples, (U;(,r,k) and (Vj;c,}/jk) ,i=1,K ,m, j=1,K ,n and
k=1,K ,d. Let E(S,y | P,)be the null expectation of S,, based on P, . Then for
large values of | S,y —E(S,y | Py)|, one may reject H!:F, =G, in favor of
Hf :F, #G,. In order to decide the critical value for any given significance level a,

we need the null distribution of S, . It may be possible to obtain the null distribution of
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S,y for small or reasonable sample sizes under P, . However for the large sample case,

we have to consider the asymptotic normality using the large sample approximation. For
this matter, you may refer to Park (1993) for the univariate case.
For the multivariate case, we consider using a quadratic form for test statistic by

combining the linear rank statistics (2.1) for testing H, : F' = G . Therefore we need the
expectations, variances and covariances under H,: F =G . For this purpose, we
introduce some more notation. Let n,k, and n;, be the numbers of observations whose
values are uncensored and censored contained in the subinterval [a] , a},,), respectively.

Under P,;, Park (1993) obtained both as follows: for each k , we have that under H,

ESw | Py)= m{z Clu ==+ Zcou } m(y, + Hoy)
1=0

and
Sg nk
V(S | Py) = (N - 1){2 Ciu ” ; #‘(Mk"’ﬂm()z}-

Also for Cov(S,y, S,y | Py), we denote n%,., n%,. . n' and n% asthe numbers
of observations whose values are uncensored for both components, uncensored for the
k th component but censored for the £'th component, censored for the kth component
but uncensored for the k£'th component and censored for both components, respectively.
Then the covariance between the k th and &'th components under H , is of the form

Cov(SkN’Sk'NlPN)

1=0 I'=

SR s 111/ 1011
2 e e
CriaCrer 1w Coxr
N

kk'

e
Py Ao
+ CouCrpr — N + CouCoir IN; = (g + Mo e + Hoy)

The derivation of Cov(S,y,S,y | Py) will appear in Appendix. Now we define

vectors and matrix in order to propose a class of test statistics for testing H, : F' =G . Let

SN = (SlNaSZNsK ’SdN)T

and
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V(Siy | Py) Cov(S,y,S,y | Py)K Cov(S,y, Sy | Py)
_ Cov(S,y Sy | PV (S, | Py )K Cov(S,,,S | Py)

N A .
Cov(S,ySay | Py)Cov(Syy, Sy | POK V(Syy | Py)

We assume that V', is positive definite. This guarantees the existence of the inverse V,;'

of ¥, . Then we may propose a class of test statistics for testing Hy : F =G
Ty = (Sy ~ESy | POy (Sy = E(Sy | Py)).

Then we may reject H, : F =G for large values of T}, in favor of H, : ' # G . Then
for any given significance level & , in order to decide the critical value C, (&), we need

the distribution of T}, under H . Then we may obtain the null distribution function of T,

based on the permutation principle for small or reasonable sample sizes. For large sample
sizes, it is natural to consider the large sample approximation. Now we need the following
assumption;

Assumption. As N — o, %V converges to a constant A € (0, 1).

Then we obtain the asymptotic result in the following Theorem.

Theorem 2.1. With the above assumption, under H, with Q. = Q. , T converges in

distribution to a chi-square distribution with d degrees of freedom.

Proof. Let
Sk

SI:N = Z {Tilciklzikl +(1-7, )COkIZik/}'

i=1 =1
Then it is easy to check that

s, k s k
. Lt n 3 n
E(SkN PN): m § :CIkI L+ § l,cOk/ @b= m(py, + toy )
1=1 N 1=1 N

and

. mn |& nt & nk
V(SkNlPN): ﬁ{;cﬁd W”'*' zcgkl ﬁ = (ay + lu()k)z}'

i=1
Also we have
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Spr kk'
)_ ARNEN {c c O P .o nlOIl
N 1 Cer 1w Cokr
N N N

[

Covls;, .S,

=1 I'=1
s kk

Bowr Moo
+ CouCrur — N + CouCorr N } (e + s ) (e + o) |-

Finally for each k, we define

S (kNIP) ro _SI:N—E(SI:Nle)
and S .

S =
“ 1/ViS,W|P§ : NZOHES

Park (1993) have shown that
PN:| =0.

lim .., E[(&N - EkN)z
S — S —2—0 under Py, almost everywhere,

Therefore we see that for each &

where —£— implies convergence in probability. Since S ,:N consists of m independent
Sk

and identically distributed random variables, Z{Ti,cik,Zik, +(1-7,)cuZ ,.k,}, from the
=1

central limit theorem with Assumption, the asymptotic distribution of Suv is standard
normal. Therefore the asymptotic distribution of Sy is also standard normal. For the

derivation of the asymptotic distribution of 7, , let S =(Sw,.K ,ng)T

§N = (§1N,K ,ng)T. Also let a = (a;,A ,ad)T a column vector whose components

are real scalars. Then we have that

Alerse-arsi
=E {Z (S = Sin )}2 P,
AT ) T 9

PN

From the Cauchy-Schwarz inequality, under P, , since



Hyo-1l Park, Jong-Hwa Na, and Seungman Hong 59

172
E[:(EkN ~ S ngw ~Skwn )PN} < E[(Ek]v -—§k1v)2 PN] ,

we see that under P,
PN] =0

for every column vector @ whose components are all real. Therefore we have that for
every column vector a

2 .
PN] Eli(Skw - Sk'N)2

lim,_, E[(aTEN - a"E'N)Z

a”" Sy —a’ Sy —2—>0 under P, almost everywhere.

For k # k', let
Piuen = COV(SkN »Sen |PN )/\/V(SkN |PN )V(Sk'N |PN )

Then it is easy to see that with Assumption and the fact that ¢ is square integrable

Py — P>
where p,,. is the limit correlation coefficient between S, and S, for k # k'. Let R

be the limiting correlation matrix whose elements are 1 for k = k' and p,,. for k # k'.

Also let R be the limiting correlation matrix S . Then it is obvious that R = R".

— .
. T . . .
Since for every column vector a, a” Sy converges in distribution to a normal
. . . . . T T o g . .
distribution with mean 0 and variance @’ Ra, a’ S also converges in distribution to a

normal distribution with mean 0 and variance a’ Ra. Thus Sy converges in distribution
to a multivariate normal with 0 mean vector and covariance matrix R with applying the
Cramer-Wold’s device (cf. Billingsley, 1985). Thus we have the result.

3. AN EXAMPLE AND CONCLUDING REMARKS

For illustration of our test procedure, we show an example using the data of Makuch
et al. (1991). The data reveal the number of days before HIV-1 positivity in culture was
registered in an assay. The patients were divided into two groups according to taking drug
1 or 2. During a 4-month period, this in vitro procedure was performed repeatedly on
samples monthly from patients with AIDS. Thus each observation consists of four
consecutive event times and so can be considered as a four variate datum. We note that
some components of each observation were censored. Also we note that for each
component, there are a lot of tied values since each observation records the number of
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days during a 30-days span. Therefore the data come into the realm of our study. For more
detailed discussion of this data, you may refer to Makuch et al. (1991). Then from the data,
it is of interest to see whether there is any difference in days among the four occasions

between the two groups. For the Wilcoxon score for all components, @, () = u with the
Kaplan-Meier estimate, we obtain that

SI —E(S% | P,) = (1.69,~0.25,0.51,~1.00)

0.71 0.19 033 0.19
0.19 0.80 0.22 0.20

V47=
0.33 0.22 070 0.28
0.19 020 0.28 0.65
T,,=7091.

Then the corresponding p -value is 0.095. If we use the median score for each k

such as
1 if u<05
0 otherwise

¢, (u) = {

with the Kaplan-Meier estimate, then we have
S4T7 - E(SZ7 | P,;) =(0.45,-0.61,0.00,2.83)

0.96 0.14 034 0.62
0.14 0.62 007 0.14
Y 71034 007 075 021
0.62 0.14 021 0.89

T, =14.71

and the corresponding p -value is 0.003, which shows that there may exist any significant
difference between the two groups. All the numerical calculations were carried out using
S-PLUS (cf. S-PLUS 4 Programmers Guide, 1997). Also we note that Makuch et al.
(1991) obtained 0.055 as its p -value based on the Gehan score for all components.

For the univariate data, Prentice (1978) obtained a similar form of the linear rank

statistics (2.1) in no tied value case among uncensored observations with applying the
marginal likelihood and proposed a nonparametric test procedure. Also there is another
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type of linear rank statistics which is so-called the log-rank type of statistics (cf. Gehan,
1965). Mehrotra et al. (1982) showed that the two types of linear rank statistics are
algebraically equivalent. For the grouped data, also Neuhaus (1993) proposed a
nonparametric test procedure based on the modified log-rank statistics and applied the
permutation principle to obtain the critical value. Park (1997) showed that the two types of
linear rank statistics for grouped data are also equivalent. Therefore one may consider
another test procedure for multivariate data with possibly censored components using the
modified log-rank statistics considered by Neuhaus (1993) for the grouped data. Then one
has to estimate the expectation and covariance matrix in this case.

Already, it was pointed out that the choice of the scores depends on the underlying
distribution F for the considerations of optimality property such as locally most
powerfulness of tests for the univariate case. Therefore for the considerations of the power
of test, we may allow to vary the scores from component to component along with the
marginal distribution functions. This point makes us to be able to apply our procedure to
the data which contain the categorical component or components. Therefore we may apply
our tests to the various type of data. Also Prentice (1978) obtained the linear rank statistics
(2.1) in no tied value case for uncensored observations by applying the marginal
likelihood. Prentice used the expected value scores. Park (2000) also showed that the two
types of scores are asymptotically equivalent.
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APPENDIX

In this appendix, we derive the covariance Cov(S,,,S,y | Py) . For this it is enough

to consider Cov(S,,S,y | Py) since the rest of them are actually the same except

nqtations. From now on, we omit the superscripts since we consider the first two
components only. Then we note that
)

E{SIN’SZNIPN}

nt 2
= EZ {Z {Tucn/l Zy, +(1-1, Yeou, Zin, }z {szcn/: Zy +(-17, 031, Z a1,
=1 | 1=0

= 1,=0

5

+ ZEZ Z 1< j<m {Z {Tncn/l Zy, +A-1)c01, 2, }

1,=0
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52
Z {szcm2 21212 +(1- sz)cozz2 Zp, \Py
1,=0
5 52
=mE ; {7115'111, Zy, +(=1y)coy Zy, }[ZO {71201212 Zy, +(1- 2'12)c02,2 Zyy, §Py
1= 2=
5 52
+m(m - I)E{IZO {Tllcl Ly, +{1-1y )coul Zy, }IZ) {1'22(;1212 Ly, + (=75 )C0, Zyy, Py
1= 2=

Therefore it is enough to obtain the expressions of the following 8 terms

lzo,zoc‘ o Bl Zon 1 Zu Py} ,,SZO,:Z;,C“" o EfenZoy (1= )21 P |
ggcm o EX =102, 100 Z 1 | Py )
,SZLO,SZ;%M Coa, E{(1 = 11)Zyy, (1= 71y) Zy, | Py }
and |
;;c“" o Bt Zon 1 Zo Py ). ;Z)c”,l o, EftuZu, (=722, Py |
22% o B~ 10 Z00, 0302 Py |
,SZIO,SZ;CM oy EXU = 10)Z00, (1= 22 210, Py |

We note that

nlllllz nlOl,lz

l':[Tnan,lelel2 | Py]= N E[Tnan, (1"1'12)21212 | Py]= N

o,

E[( ‘Tn)an,lele/2 | Py]l=

and

Aoou,

E[(-7,)Z,, _712)21212 | Py]l=

Also we note that
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Elr,Z),, 1525, [Py 1=P{r, =1, Z;, =1, 7, = 1, Zy, =1 | Py }
=P{r, =L 2, =1, |7 =1, Zy, =1, Hy P{ty =1, Zy, =1 Py}

_ Mg, | Py, -1y, + Py Py, = Mgy,

N | N-1 ny, N -1 Py,

My My, 1 My,

"N-1 N N-1 N

Sy S
1=1 =1

In the following the other notations with dot are similarly defined. Then with the same
arguments used for E [7),Z,,, 7,,Z,, | Py], we obtain that

: Py Moy, 1 Py,
E[Tllzlul(1“1'22)22212 |PN]:N_1 N N-1 N >
Bou. Mo, 1 Poyy,

EMA-t) 2w tnloy, | Pel=5—=—F -7

and
Poor,. Moo, I Mooy,

N-1 N N-1 N

E[(1-7,)Z, (1-73)Zy, | Py]=

Using the expressions for all terms, with straightforward but tedious calculation leads
to the conclusion.
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