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Abstract. A new test for testing that a life distribution is exponential
against the alternative that it is harmonic new better (worse) than used
in expectation upper tail HNBUET (HNWUET), but not exponential is
presented based on the highly popular “Kernel methods” of curve fitting.
This new procedure is competitive with old one in the sense of Pitman’s
asymptotic relative efficiency, easy to compute and does not depend on
the choice of either the band width or kernel. It also enjoys good power.
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1. INTRODUCTION AND DEFINITIONS

In reliability theory, various concepts of aging have been proposed to study
lifetimes of components or systems. Therefore, statisticians and reliability analysts
have shown a growing interest in modeling survival data using classification life
distributions (i.e. distribution function F with F(0—) = 0, survival function F =
1—F and finite mean p = f;° F(u)du) based on some aspects of aging. Among these
aspects are IFR (increasing failure rate), IFRA (increasing failure rate average),
NBU (new better than used), NBUE (new better than used in expectation) and
HNBUE (harmonic new better than used in expectation). For definitions and further
details see, for example, Haines (1973), Barlow and Proschan (1981) and Zacks
(1992). Deshpande et al. (1986) introduced a new class of life distribution named

'HNBUE(3) (HNWUE(3)) (harmonic new better (worse) than used in expectation of

*Corresponding Author.
E-mail address: abuyousf@ksu.edu.sa
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third order) which is larger than HNBUE (HNWUE) class. Note that Abouammoh
and Ahmad (1989) renamed the class HNBUE(3) by HNBUET (harmonic new better
than used in expectation upper tail).

The implications among the above classes of life distributions are

IFR— IFRA =— NBU =— NBUE — HNBUFE = HNBUET.
Similar implications hold for the corresponding dual classes
DFR— DFRA = NBU — NBUE =—> HNBUE = HNBUET.

Many test statistics have been developed for testing exponentiality against various
aging alternatives. Testing exponentiality against the classes of life distributions
has received a good deal of attention. For testing against new better than used
(NBU), we refer to Hollander and Proschan (1972) and Koul (1977) among others.
For testing against decreasing mean residual life (DMRL) we refer to Hollander and
Proschan (1975), Ahmad and Li (1992) and Abu-Youssef (2002) among others. For
new better than used in expectation (NBUE), we refer to Hollander and Proschan
(1975) and Ahmad et al. (1999) among others. For harmonic new better than used
in expectation (HNBUE), we refer to Klefsjo (1982) and Hendi et al. (1998) among
others.

The classes HNBUE and HNBUET may be defined on the basis of a variability
definitions due to Stoyan (1983), which is the following.

Definition 1. Let X and Y be two random variables with marginal distributions
F and G, respectively. We say that X is less variable than Y (or X is smaller than
Y in. convex ordering) and write X <yr Y if E[h(X)] < E[h(Y)] for all increasing
convex functions h. Clearly X <yr Y if and only if [° F(u)du < [° G(u)du for
all z > 0 where F(z) = 1 — F(z) and p = [;° F(u)du.

It.is not difficult to see that X is HNBUE if and only if X <yr Xg, ¢f. Ahmad
(1995), where Xy is a random variable with the exponential distribution with mean

u. Then from definition (1.1) we have the following:

(i) Fe HNBUE iff
® -z

/ F(u)du < pexp (—u—), >0, u>0. (1.1)

z
Integrating both sides of Equation (1.1) with respect to z, from ¢ to co, we obtain

00 poo 9 —t

/ / F(u)dudz < p*exp <7) ; z,t >0, u>0. (1.2)

t T

Equation (1.2) is the definition of the class “harmonic new better than used in
expectation upper tail (HNBUET)”.
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Example 1. Consider the survival function F(z) given by

| e Vo<z<l1
F(z) =4 0.7e7! Vi<z<l15
0 Vz>15

It is easy to prove that F(z)e HNBUET. Al-Ruziza et al (2003) derived a moment
inequality for HNBUET, based on this inequality they introduced testing procedure
for exponentiality against HNBUET. Al-Ruziza (2003) derived test statistics based
on U-test and demonstrated applications for HNBUET.

This article proposes a new test statistic, based on Kernel method , for testing
Hj : F is exponential (u) against H; : F is HNBUET and not exponential. This
approach is based on defining a measure of departure from Hj in favor of H; that
depend on pdf f(z) and then estimating this measure empirically. The empirical
version of this measure require estimating f(z) and thus one may use the celebrated
kernel method. For a background material on this method, we refer to the books
by Scott (1992) and Jones and Wand (1995). Using Kernel method in reliability
appears in early work of Watson and Leadbetter (1964) and Ahmad (1976) among
others. While using kernal method for testing NBUC, NBUE, and HNBUE are given
by Ahmad, et al (1999). In section 2, conditions under which Vn(Akr, — Akr)
is asymptotically normal are given and the null and non-null variance are obtained.
The test based on A KF, is shown to be consistent. Monte Carlo null distribution
critical points for sample sizes n = 5(1)40 are presented. In section 3, efficiency
of the test statistic are calculated for some common alternatives and compared to
other procedures. Finally the power estimate of the test is given for some well known
alternatives in section 4.

2. TESTING THE HNBUET CLASS

2.1 The test procedure

The test here depends on a random sample X1,..., X, from a population with
distribution F. We wish to test the null hypothesis Hy : F is exponential against
the alternative hypothesis H; : F' is HNBUET and not exponential, that is,

00 fOO —t
/ / F(u)dudt < p®exp (—) ; z,t >0, p>0.
t T 12

In order to test Hy against H; we use the following measure of departure from Hj
as

dr = | " r@) it exp(-a/u) - [ " U(t)dt]dF (z) (21)

where
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We have
0 1 o 1 [,
/ W(t)dt = —au(s) - 52°F(z) + 5 / 21 > t)dF(2). (2.2)
x T .
Using (2.2), (2.1) becomes

Sur= [ f@eT +avla) + 27°F(0)

x
—% 21(z > )dF(1))dF (z), (2.3)
0
where
1, z>1t
I(y>1t) =
0, ow

Note that under Hy : dgr = 0, while under H; : dxv > (<)0. To estimate dxp,
let X1, X5,...,X, be a random sample from F, let F n(z) =1 3 = 1I(X > z) de-
notes the emplrlcal distribution of the survival function F(z), dF ( ) = ,u is estl-
mated by sample mean X and pdf f(z) is estimated by f,(z) = . an ZJ _ k(=L )
where k(.) be a known pdf, symmetric and bounded with 0 mean and varlance
o2 > 0. Symmetric uniform, normal, double exponential are examples of such pdf.
Let {a,} be a sequence of reals such that a, — 0 and na, = oo as n — oo. Other
conditions on k and a, will be stated when needed. We propose to estimate dxy by

Sr = / Fol@) X exp( X)+mvn($)+1:c2Fn(:v)

1
-3 / 21t > 2)dFy(8)]dFn (), (2.4)
0
ie.,
R 1 n n n n X _ Xl R
dkm = =22 2 2 E(T——){X; Xpe™ /X
i=1j=1k=11[=1
1 1
+(XiX; - 5X,? — —2-X]2)I(Xj > X;)}. (2.5)
Let us rewrite(2.5) as
. 1 n n n
mn i#jElEhEn

To make the test statistics scale invariant, we take

A SkV
Apy. = i 2.7
KV X’ 27)
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with measure of departure Agy, = Ji‘él

I
Set
X —-X <~
&(X1, X2, X3, X4) = k(lT“){xzxg,e—Xl/x
1 1
+HX1 X = XT - SXPI(X2 > X)), (2.8)

and define the symmetric kernel

1
§(X1, X2, X3, Xy) = X Y ¢n(Xir, Xia, Xis, Xia),
"R
where the sum over all arrangements of (X1, X2, X3and X4). Then ) KV, is equivalent
to the U-statistic. Since AKVn and Jiu‘él have the same limiting distribution, we use
\/ﬁA(S KF, — Ok r) and the following theorem summarizes the large sample properties
of § KF, a8 Un.

Theorem 1. If na; — 0 as n — oo, if f has bounded second derivative and if

V(%n(X1)) < 00, where 1, (X1) is as given (2.15), then \/n(dxF, — 6xr) is asymp-
totically normal with mean 0 and variance lim, V (¢, (X1). Under Hy, the variance
=0.244

The following simple lemma is needed in the proof of Theorem 1.

Lemma 1. Let 9, = ESKFn, then

0= [ Blha@) [ f@I2eT +o00) + %ﬁ(x)

—% t2I(z > t)dF(t)|dF(z) (2.9)
Proof. Note that Ef,(z) = L + J(E4) f(y)dy. Set gn(z) = Efu(z), thus
E(SKpn =60, = E[¢p(X1, X2, X3, X4)] (2.10)
where
(X1, X2, X3, Xy) = k(@){)@){se_x‘/y
+(X1X2 — —;—Xf - %X%)I(XQ > X1)},
Hence

XY 1 1
0n = Egn(X1){X2Xse ™ X1/X 4 (X1X, — 5X% - §X§)I(X2 > X))}
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= /°° gn(@)[ple® +av(z)+ 137:2_17(37) - 1/ t2I(z > t)dF(t)|dF(z). (2.11)
0 . 2 2 0

Proof of theorem 1. Note that
Vn(xr, — 6xr) = Vn(bkE, — 0) + vVn(0s — Ok F) (2.12)

But

Efn(“") =

dy—/k flz — aw)dw

a? " 2
~ f(z)+ —2'f (z)oy,
under the condition assumed on k. Hence

a’ 2 ® 2 == 1 o=
0, =~ 5KF+301¢{/0 fl(z)[pe™ +x1/(a:)+§:z: F(z)

_% /0 * t2I(z > t)dF(t)]dF(:c)}. (2.13)

Thus /n(0, — 6xr) = O(a®y/n) = 0(1) by assumptions. Note also dxF is unbiased
estimate of 9, = E6 KF and is asymptotically unbiased estimate of dx F,. Next, note
that

il —6n) = V(= Zzpn (n(n—1)(n - 2)(n —3)7!
ZZZ 671 XZ’XJ’kaXl’) (214)
i#j#EI+k
where
Yn(X1) = Epn(X1, X2, X3, X4)|X1] + E[¢n (X1, X2, X3, X4)| X1]
+E[¢n(X27X3aX17X4)|X1]
+E{¢H(X27X3’X4’X1)|X1] - 49n (215)
and
€n(X1, X2, X3, X4) = (X1, Xo, X3, X4) — thn(X1) — 3¢p0n. (2.16)

Now, by Layaponouff’s central theorem, the first term in the right hand side of (2.16)
is asymptotically normal if L, = %f—nlﬂi[V(z/)n(X D)2 5 0 as n — co. Now
using (2.12) it is easy to see for large n

E[¢n (X1, X2, X3, X4)| X1] = f(X1)[,u26:uﬁ +X1/ooudF(u)
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0 -y X1
Elén(Xa, X1, X5, X0)|X1] = X /O fw)e ™ dF (u) + X3) /0 uf (u)dF (u)
1 (%
=y

—%X% /O M w)dF (), (2.18)

u’ f (u)dF (u)

Elgn(Xa, X, X1, X9)|X1] = uXi /0 " fy)eFdF(y) + /0 "y /y ” uf (w)dudy

_.1_/°oy2f2
2 / £2(y) / F(u)dudy. (2.19)

Observe that E[¢, (X2, X3, X4, X1)|X1] has the same representation as (2.17). Set
7(X1) to be the sum of twice of right hand side of (2.17) plus that of (2.18) and that
of (2.19).

Thus
¥n(X1) = n(X1) + Op(a?). (2.20)
Hence
V(¥n(X1)) = Var(m(X1)) + O(a?)
and for p > 2,

Elgn(X1)P < CoE(X1)P = O(1).

Hence, L, — 0 as n — oo provided that na* — 0 as n — co.

Next, look at

Bl g SE ST Y 6l X5, X %)

iZj#kAIEm
1

= A= DEn—2%(n -3 Zi;%lz
E[&n(Xi, X5, Xk, X1) % &n(Xs, X, X, X3)]

= i 1)E§721(X1,X2,X3,X4) = 0(na)™! = 0(1). (2.21)

Under Hy, F(z) = e~% and

-11 11 1 1
X)) = So X = X2 4 g,

24 12 4 8 (2:22)
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Thus Ey[n(X;)] = 0 and 0 = Var[n(X;] = 0.24441 by direct calculation. The
theorem is proved.

2.2 Monte Carlo null distribution critical points

We have simulated the upper percentile points for 95%, 98% and 99%. Table
2.1 gives these percentile points of the statistic Ag g, in (2.6). The calculations are
based on 5000 simulated samples of sizes n =5(1)40. It is clear from Table 2.1 that
percentile values change slowly as n increases. To perform the above test, calculate

\/%A kF, and reject Hy if this values exceeds Z, the standard normal variate.

Table 2.1 Critical values of 4 KF,

n | 95% 98% 99%
5 | 1.1116 | 1.9625 | 2.9074
6 | 0.7376 | 1.5085 | 2.2226
7 | 0.5067 | 0.7512 | 0.9450
8

9

0.4108 | 0.6422 | 0.9790
0.3174 | 0.5569 | 0.7182
10 | 0.3033 | 0.4205 | 0.6207
11 | 0.2481 | 0.3994 | 0.5462
12 | 0.2683 | 0.4323 | 0.5614
13 | 0.2105 | 0.3227 | 0.3888
14 | 0.2051 | 0.3121 | 0.4345
15 | 0.2116 | 0.2654 { 0.3576
16 | 0.1688 | 0.2476 | 0.2760
17 | 0.1609 | 0.2385 | 0.2972
18 | 0.1527 | 0.2357 | 0.2766
19 | 0.1684 | 0.2268 | 0.2775
20 | 0.1335 | 0.1901 | 0.2259
21 | 0.1437 | 0.2044 | 0.2402
22 1 0.1363 | 0.1856 | 0.2321
23 | 0.1305 | 0.1705 | 0.2189
24 | 0.1136 | 0.1681 | 0.2116
25 | 0.1262 | 0.1737 | 0.2164
26 | 0.1178 | 0.1528 | 0.1963
27 | 0.1101 | 0.1444 | 0.1751
28 | 0.1160 | 0.1588 | 0.1788
29 | 0.1096 | 0.1468 | 0.1596
30 | 0.1004 | 0.1376 | 0.1566
31 [ 0.1079 | 0.1370 | 0.1546
32 [ 0.0916 | 0.1300 | 0.1645
33 | 0.0930 | 0.1244 | 0.1520
34 | 0.0955 | 0.1301 | 0.1590
35 | 0.0866 | 0.1147 | 0.1285
36 | 0.0860 | 0.1208 | 0.1469
39 | 0.0844 | 0.1052 | 0.1301
40 { 0.0805 | 0.1056 | 0.1216
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3. PITMAN ASYMPTOTIC RELATIVE EFFICIENCY (PARE)

In this section, we compare the statistic Ag F,, given in equation (2.7), with the
statistics A F,, proposed by Al-Ruzaiza (2003) and Agl), proposed by Al-Ruzaiza et
al. (2003) The construction of this statistic is based on the moments inequalities
for harmonic new better than used in expectation property. The comparisons are
achieved by using the Pitman asymptotic relative efficiency (PARE), which is defined
as follows:

Let Ty, and Ty, be two test statistics for testing Hy : Fpe{Fs_}, 0, = 6+ Cn~1/2
where C is an arbitrary constant. Then the PARE of T}, relative to T5, is defined
by

e(T1n, Ton) = {p1(00/01(00)}/{12(60)/02(60)}

where ul(6p) = limnqoo{%E(Tin)}g_,go and 02(6) = limp—00 Vare(Tin), i = 1,2 is
the null variance.

We consider the following three alternative distributions:

0z?

(i)  The linear failure rate family : Fi(z) =e™* 2, £>0,02>0
(ii) The Makeham family : Fo(x) = e 0(+e™"=1)  2>0,0>0
(iii) The Weibull family : Fa(z) = e, £>0,0>0.

Direct calculations give the efficiencies as follows:

Table 3.1 Efficiencies of the test

Distribution AKFn Agl) Apn
Y31
Linear failure | 0.974 | 0.9486 | 0.9584
rate
F
Makham 0.239 | 0.1976 | 0.228
F3
Weibull 1.889 | 0.791 -

By direct calculations , the asymptotic relative efficiencies (PARE) of the test

Ak F, With respect to Agl) are 1.029, 1.21 and 2.39 for F1, F» and F; respectively and
- with respect to Ag, are 1.0177 and 1.209 for F; and F5. Then our U-statistic A KF,

performs better than the statistic Agl) and Af, for all the alternative distributions
considered.
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4. THE POWER ESTIMATES

We calculate the estimate of the statistic Axp, defined in (2.6) at 95% upper
percentile level and for the following alternative distributions:

p— : 1;2
(i)  The linear failure rate family : F;(0) = e‘x_oT, z>0,0>0
(ii) The Makeham family : Fa(f) = e2-0te™ 1) £>0,0>0
(iti) The Weibull family : Fa(8) = e, z>0,0>0.

All these distributions are IFR (for an appropriate restriction on ), hence they
all belong to a wider class. Moreover, all these distributions reduce to exponential
distribution for (i) and (ii) when the value # = 0 and for (iii) when the value of § = 1.
Table 4.1 contains the power estimate for the AKF" test statistic with respect to
these distributions. The estimates are based on 5000 simulated samples of size n =
10, 20 and 30 at level 95% upper percentile.

Table 4.1 Power estimate for A K F,-statistic

Distribution | Parameter Sample size

0 n=10 n=20 n=30

Fi(0) 1 0937 0975 0.982
(Linear failure 2 0964 0990 0.995
Rate) 3 0.980 0.995 0.996
F>(0) 1 0.898 0904 0.921
Makeham 2 0.930 0942 0.971
3 0.965 0980 0.977

F3(0) 1 0.762 0.697 0.652
Weibull 2 1.000 1.0000 1.0000
3 1.0000 1.0000 1.0000

The power estimate in Table 4.1 shows clearly the departure from exponentiality
towards (HNBUET) properties as 6 increases.
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