Expression of Recombinant Bovine Lactoferrin and Lactoferrin N-lobe in Rhodococcus erythropolis at Low Temperature

저온에서 Rhodococcus erythropolis 균주로부터 재조합 젖소 Lactoferrin과 Lactoferrin N-lobe의 발현

  • Kim Woan-Sub (Proteolysis and Protein Turnover Research Group, Research Institute of Geonme-Based Biofactory, National Institute of Advanced Industrial Science and Technology(AIST)) ;
  • Kim Gur-Yoo (Department of Animal Food Science and Technology, Kangwon National University) ;
  • Kwon Ill-Kyung (Department of Animal Food Science and Technology, Kangwon National University) ;
  • Goh Juhn-Su (Department of Animal Food Science and Technology, Kangwon National University)
  • 김완섭 (일본산업기술종합연구소 유전자발현공학연구실) ;
  • 김거유 (강원대학교 축산식품과학과) ;
  • 권일경 (강원대학교 축산식품과학과) ;
  • 고준수 (강원대학교 축산식품과학과)
  • Published : 2005.06.01

Abstract

Lactoferrin is a member of the transferrin family of iron-binding glycoproteins. It is originally found in milk. In addition to its antibacterial and antiviral activities, lactoferrin has many other biological functions include anti-inflammatory properties, antitumor, cell growth-promoting activity as well as antioxidant effect In the present study, we report the production of recombinant bovine lactoferrin and lactoferrin N-lobe in the Rhodococcus erythropolis (R erythropolis) using pTip vector. The expression level was investigated in various range of temperature, and we could successfully expressed the bovine lactoferrin and lactoferrin N-lobe in R erythropolis at low temperature. The recombinant proteins were purified by Nickel-Nitrolotriacetic acid (Ni-NTA). The purified proteins were confirmed by SDS-PAGE and Western blot, which indicating that the recombinant proteins have a molecular weight of 80kDa and 43kDa for bovine lactoferrin and lactoferrin N-lobe, respectively.

락토페린은 트랜스페린 패밀리에 속하며, 철 결합성 당단백질로 대부분 포유동물의 젖에서 발견되고 있다 락토페린의 생리학적 기능으로는 항균활성, 항바이러스활성, 항염증반응, 항암효과, 세포의 성장과 항산화 효과 등이 알려져 있다. 본 연구는 PTip vector를 이용한 Rhodococcus erythropolis(R. erythropolis) 숙주로부터 재조합 젖소 락토페린과 락토페린 N-lobe의 생산을 시도하였다. 이들 단백질의 발현은 다양한 온도 범위에서 발현시켰다. 그리고 R. erythropolis의 숙주 내에서 이들 단백질의 발현은 낮은 온도 내에서도 가능함을 보여주었다. 생산된 재조합 단백질들은 Ni-NTA 정제 담체를 이용하여 정제하였다. 정제의 방법은 비변성 조건과 변성조건으로 수행하였다. 그리고 정제된 재조합 젖소 락토페린과 락토페린 N-lobe는 SDS-전기영동과 Western blot분석을 통하여 확인하였다. 생산된 재조합 젖소 락토페린은 분자량 80kDa, 그리고 락토페린 N-lobe가 43kDa의 분자량을 나타내었다.

Keywords

References

  1. Arnold, R. R., Brewer, M., and Gauthier, J. J. (1980) Bactericidal activity of human lactoferrin: Sensitivity of a variety of microorganisms. Infect. Immun. 28, 893-898
  2. Ellison, III R. T. (1994) The effects of lactoferrin on gram negative bacteria. Adv. Exp. Med. Biol. 357, 71-79
  3. Kim, W. S., Tanaka, T., and Shimazaki, K. (2004) Transferrin family proteins bind to Bifidobacterium spp. Milchwissenschafi 59, 491-494
  4. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227, 680-685 https://doi.org/10.1038/227680a0
  5. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265-275
  6. Masson, P. L., Heremans, J. F., and Dive, C. (1966) Studies. of the proteins of secretions from two villous tumours of the rectum. Gastroenterologia 105, 270-282 https://doi.org/10.1159/000202055
  7. Masson, P. L. and Heremans, J. F. (1971) Lactoferrin in m.ilk from different species. Comp. Biochemi. Physi. 39B, 119-129
  8. Nagasawa, T., Kiyosawa, I., and Kuwahara, K. (1972) Amounts of lactoferrin in human colostrum and milk. J. Dairy Sci. 55, 1651-1659 https://doi.org/10.3168/jds.S0022-0302(72)85741-2
  9. Nakamura, I., Watanabe, A, Tsunemitsu, R., Lee, N. Y, Kumura, H., Shimazaki, K., and Yagi, Y. (2001) Production of recombinant bovine lactoferrin N-lobe in insert cells and its antimicrobial activity. Protein Expres. Purif. 21, 424-431 https://doi.org/10.1006/prep.2001.1396
  10. Nuijens, J. H., van Berkel, P. H. C., and Schanbacher, F. L. (1996) Structure and biological actions of lactoferrin. J. Mamm. Gland Biol. Neopl. 1, 285-295 https://doi.org/10.1007/BF02018081
  11. Paramasivam, M., Saravanan, K., Uma, K., Sharma, S., Singh, T. P., and Srinivasan, A. (2002) Expression, purification, and characterization of equine lactoferrin in Pichia pastoris. Protein Expres. Purif. 26, 28-34 https://doi.org/10.1016/S1046-5928(02)00528-4
  12. Shao, Z., Dick, W. A., and Behki, R. M. (1995) An improved Escherichia coli Rhodococcus shuttle vector and plasmid transformation in Rhodococcus spp. using electroporation. Lett. Appl. Microbiol. 21, 261-266 https://doi.org/10.1111/j.1472-765X.1995.tb01056.x
  13. Shimazaki, K. (2000) Lactoferrin: A marvelous protein in milk. Animal Science J. 71(4), 329-347
  14. Sorensen, M. and Sorensen, S. P. L. (1938) The proteins in whey. Comptes Rendus des Travaux du Laboratoire Carlsberg, Ser. Chimique. 23, 55-99
  15. Wang, S. R., Yang, T. S., Jin, S. M., Tsai, M. S., Wu, S. C., and Mao, S. J. T. (2002) Expression, characterization, and purification of recombinant porcine lactoferrin in Pichia pastoris. Protein Expres. Purif. 25, 41-49 https://doi.org/10.1006/prep.2001.1607
  16. Weickert, M. J., Doherty, D. R., Best, E. A., and Olins, P. O. (1996) Optimization of heterologous protein production in Escherichia coli. Curr. Opin. Biotechnol. 7, 494-499 https://doi.org/10.1016/S0958-1669(96)80051-6
  17. Yagafarova, G. G. and Skvortsova, I. N. (1996) A new oil-oxidizing strain of Rhodococcus erythropolis. Appl. Biochem. Microbiol. 32, 207-209