Effect of RFLP Marker of the Mitochondrial DNA D-Loop Region on Milk Production in Korean Cattle

한우 Mitochondrial DNA D-Loop 영역의 RFLP Marker가 산유량에 미치는 영향

  • Chung Eui-Ryong (Department of Biotechnology, College of Life Science and Natural Resources, Sangji University) ;
  • Chung Ku-Young (Department of Animal Science and Technology, Sangji University)
  • 정의룡 (상지대학교 생명자원과학대학 생명공학과) ;
  • 정구용 (상지대학교 생명자원과학대학 동물자원학과)
  • Published : 2005.06.01

Abstract

This study was performed to determine sequence variation and RFLP of the mt DNA D-loop region using Southern blot hybridization analysis and to develop mt DNA marker affecting milk production traits in Hanwoo cows. The PCR was used to amplify an 1142 bp fragment within the D-loop region of mt DNA using specific primers. Mt DNA were digested with seven restriction enzymes and hybridized using DIG-labeled D-loop probe. The mt DNA RFLP polymorphisms were observed in the four enzymes, BamHI, RsaI, XbaI and HpaII. Nucleotide substitutions were detected at positions 441 (G/C), 469 (T/C), 503 (C/T), 569 (G/A), 614 (C/A) and 644 (C/T) of the mt DNA D-loop region between two selected lines. Significant relationship between the XbaI RFLP type and breeding value was found(p<0.05). Cows with A type had higher estimated breeding values than those with B type (P<0.05) between high and low milk production lines. Therefore, the RFLP marker of mt DNA could be used as a selection assisted tool for individuals with high milk producing ability in Hanwoo.

본 연구는 mt DNA의 D-loop 영역을 probe로 이용한 Southern blot hybridization 분석 기법을 이용하여 한우에서 mt DNA의 RFLP를 분석하고 RFLP marker가 유생산에 미치는 영향을 분석하여 산유량 관련 DNA marker를 개발하고자 수행하였다. Mt DNA의 D-loop 영역내 404번부터 15061까지 1142 bp 크기의 염기 서열 부위를 특이적인 primer를 이용하여 PCR로 증폭하였다. Mt DNA를 HpaII, BamHI, XbaI, HinfI, EcoRI, HindII 및 RsaI 7종류의 제한효소를 이용하여 각각 절단한 후 DIG로 표지된 D-loop probe를 이용하여 검출한 결과 XbaI, RsaI, BamHI 및 HpaII 4종류의 제한효소에서 각각 RFLP 다형성이 검출되었고 EcoRI, HindIII 및 HinfI 3종류 제한효소는 변이가 존재하지 않았다. 다유 계통과 저유 계통 선발 집단간의 각 제한효소별 RFLP type의 출현빈도를 비교한 결과 BamHI 및 RsaI 제한효소에서 두 집단간의 RFLP type의 출현율에 각각 통계적 유의성(P<.05)이 인정되었다. 다유 및 저유성으로 극단의 육종가 값을 갖는 두 계통의 mt DNA D-loop영역의 염기 서열을 비교 분석한 결과 441번째 염기가 G/C, 469번째 염기는 T/C, 503번째 염기는 C/T, 569번째 염기는 G/A, 614번째 염기는 C/A그리고 644번째 염기는 C/T로 각각 염기가 치환되었고 특히, 다유 계통 개체의 677번째의 A염기가 저유 계통 개체에서는 결실되어 있다는 사실이 확인되었다. 한편, 한우 암소의 유생산에 영향을 미치는 효과를 규명하기 위하여 mt DNA RFLP 형과 송아지 이유시 체중, 생시체중 및 비유량을 측정하여 얻어진 육종가의 성적을 근거로 통계 분석한 결과 XbaI 제한효소의 RFLP type이 산유 능력 육종가와 유의적인 관련성이 확인되었다 (P<05). 즉, RFLP A type을 갖는 축군의 평균 육종가 추정치가 6.233으로 B type을 갖는 축군의 평균 육종가 추정치 0.757보다 월등히 높은 것으로 나타났다. 결론적으로 산유량과 관련성이 확인된 mt DNA RFLP type은 한우의 산유량 향상을 위한 DNA marker로 이용 가능할 것으로 기대된다.

Keywords

References

  1. Anderson, S., De Drujin, M. H. L., Coulson, A. R, Eperon, V. C., Sanger, F., and Young, I. G. (1982) The complete sequence of the bovine mitochondrial DNA : conserved features of the mammalian mitochondrial genome. J. Mol. Biol. 156, 683-717 https://doi.org/10.1016/0022-2836(82)90137-1
  2. Bell, B. R, McDaniel, B. T., and Robison, O. W. (1985) Effect of cytoplasmic inheritance on production traits of dairy cattle. J. Dairy Sci. 68, 2038-2051 https://doi.org/10.3168/jds.S0022-0302(85)81066-3
  3. Bhat, P. P., Mishar, B. P., and Bhat, P. N. (1990) Polymorphism of mitochondrial DNA(mt DNA) in cattle and buffaloes. Biochem. Genet. 28, 311-318
  4. Boettcher, P. J., Freeman, A. E., Johnston, S. D., Smith, R. K., Beitz, D. C., and McDaniel, B. T. (1996) Relationships between polymorphism for mitochondrial deoxyribonucleic acid and yield traits of Holstein cows. J. Dairy Sci. 79, 6.47-654
  5. Brown, W. M., George, M. J., and Wilson, A C. (1979) Rapid evolution of animal mitochondrial DNA molecules from rats. Proc. Natl. Acad. Sci. USA 76, 1967-1971 https://doi.org/10.1073/pnas.76.4.1967
  6. Brown, D. R., Koehler, C. M., Lindberg, G. L., Freeman, A E., Mayfield, J. E., Myers, A. M., Schutz, M. M., and Beitz, D. C. (1989) Molecular analysis of cytoplasmic genetic variation in Holstein cow. J. Anim. Sci. 67, 1926-1932
  7. Chung, E. R., Park, J. J., and Han, S. K. (1996) RFLP analysis of bovine mt DNA using PCR technique. Korean J. Anim. Sci. 38, 307-320
  8. Chung, E. R., Kim, W. T., Kim, Y. S., Lee, J. K., and Han, S. K. (2002) Sequence and genetic variation of mitochondrial DNA D-1oop region in Korean cattle. J. Anim. Sci. & Technol. (Kor.) 44, 181-190 https://doi.org/10.5187/JAST.2002.44.2.181
  9. Desjardins, P. and Morais, R. (1990) Sequence and gene organization of the chicken mitochondrial genome. J. Mol. Biol. 212, 599-634 https://doi.org/10.1016/0022-2836(90)90225-B
  10. Ensiminger, M. E. (1987) Beef cattle science(6th ed.). The Interstate Pub. pp. 87-89
  11. Freeman, A. E. (1990) Cytoplasmic inheritance associated with economic traits-phenotypic and molecular difference. 4th World Congr. Genet. Applied to Livest. Prod. Edinburgh, Scotland XIV. pp. 140-143
  12. Hauswirth, W. W., and Laipis, P. J. (1982) Mitochondrial DNA polymorphism in a maternal lineage of Holstein cow. Proc. Natl. Acad. Sci. USA 79, 4686-4690 https://doi.org/10.1073/pnas.79.15.4686
  13. Hiendleder, S., Lewalski, H., Wassmuth, R., and Janke, A. (1998) The complete mitochondrial DNA sequence of the domestic sheep (Ovis aries) and comparison with the other major ovine haplotype. J. Mol. Evol. 47, 441-448 https://doi.org/10.1007/PL00006401
  14. Hutchison III, C. A., Newblod, J. E., Potter, S. S., and Edgell, H. M. (1974) Maternal inheritance of mammalian mitochondrial DNA. Nature 251, 536-538 https://doi.org/10.1038/251536a0
  15. Laipis, P. J., Hauswirth, W. W., Obrien, T. W., and Mochaels, G. S. (1979) A physical map of bovine mitochondrial DNA from a single animal. Biochem. Biophys. Acta. 565, 22-26 https://doi.org/10.1016/0005-2787(79)90080-7
  16. Mannen, H., Kojima, T., Oyama, K., Mukai, F., Ishida, T., and Tsuji, S. (1998) Effect of mitochondrial DNA variation on carcass traits of Japanese black cattle. J. Anim. Sci. 76, 36-41
  17. Miller, S. A, Dykes, D. D., and Polesky, H. F. (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucl. Acids Res. 16, 1215 https://doi.org/10.1093/nar/16.3.1215
  18. Ron, M, Genis, I., and Shani, M. (1992) Mitochondrial DNA polymorphism and determination of effects on economic traits in dairycattle. Anim. Biotech. 3, 201-219 https://doi.org/10.1080/10495399209525773
  19. Ron, M., Yoffe, O., and Weller, J. I. (1993) Sequence variation in D-loop DNA of cow lineages selected for high and low maternal effects on milk production. Anim. Genet. 24, 183-186 https://doi.org/10.1111/j.1365-2052.1993.tb00284.x
  20. Schutz, M. M., Freeman, A E., Aeitz, D. C., and Mayfield, J. E. (1992) The importance of maternal lineage on milk yield traits of dairy cattle. J. Dairy Sci. 75, 1331-1341 https://doi.org/10.3168/jds.S0022-0302(92)77884-9
  21. Schutz, M. M., Freeman, A E., Lindberg, G. L., and Beitz, D. C. (1993) Effects of maternal lineages grouped by mitochondrial genotypes on milk yield and composition. J. Dairy Sci. 76, 621-629 https://doi.org/10.3168/jds.S0022-0302(93)77383-X
  22. Watanabe, T., Hayashi, Y., Semba, R., and Ogasawara, N. (1985) Bovine mitochondrial DNA in restriction endonuclease cleavage patterns and the location of the polymorphic sites. Biochem. Genet. 26, 947-957
  23. Watanabe, T., Hayashi, Y., Kimura, J., Yasuda, Y., Saitou, N., Tomita, T., and Ogasawara, N. (1986) Pig mitochondrial DNA: polymorphism, restriction map orientation and sequence data. Biochem. Genet. 24, 385-396 https://doi.org/10.1007/BF00499094
  24. Watanabe, T., Masangkay, T. S., Wakana, S., Saitou, N., and Tomita, T. (1989) Mitochondrial DNA polymorphism in native Philippine cattle based on restriction endonuclease cleavage patterns. Biochem. Genet. 27, 431-438 https://doi.org/10.1007/BF02399672