Hypolipidemic Effects of Glycoprotein Isolated from Ficus Carica Linnoeus in Mice

무화과 당단백질의 혈중지질 저하 효과

  • Lim, Kye-Taek (Molecular Biochemistry Laboratory, Institute of Biotechnology, Chonnam National University) ;
  • Lee, Sei-Jung (Molecular Biochemistry Laboratory, Institute of Biotechnology, Chonnam National University) ;
  • Ko, Jeong-Hyeon (Molecular Biochemistry Laboratory, Institute of Biotechnology, Chonnam National University) ;
  • Oh, Phil-Sun (Molecular Biochemistry Laboratory, Institute of Biotechnology, Chonnam National University)
  • 임계택 (전남대학교 생명공학 연구소) ;
  • 이세중 (전남대학교 생명공학 연구소) ;
  • 고정현 (전남대학교 생명공학 연구소) ;
  • 오필선 (전남대학교 생명공학 연구소)
  • Published : 2005.08.31

Abstract

Glycoprotein (60 kDa) isolated from Ficus Carica Linnoeus (FCL glycoprotein) was examined by evaluating its hypolipidemic effects on plasma cholesterol levels and hepatic detoxicant enzyme activities in ICR mice. FCL glycoprotein $(100{\mu}g/mL)$ had strong scavenging activities (38%) against lipid peroxyl radicals. When mice were treated with Triton WR-1339 (400 mg/kg), levels of total cholesterol (TC) and low-density lipoprotein (LDL)-cholesterol in plasma significantly increased by 53.9 and 47.5 mg/dL, respectively, compared to the control, whereas, when pretreated with FCL glycoprotein $(100{\mu}g/mL)$, decreased remarkably by 55.4, and 47,0 mg/dL, compared to Triton WR-1339 treatment alone. Interestingly, high-density lipoprotein (HDL)-cholesterol level did not change. Body and liver weights did not change significantly after Triton WR-1339 treatment in presence of FCL glycoprotein. FCL glycoprotein $(100{\mu}g/mL)$ stimulated activities of antioxidative detoxicant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), whereas GPx activity significantly increased compared to the control. These results suggest FCL glycoprotein has abilities to scavenge lipid peroxyl radicals, lower plasma lipid levels, and stimulate detoxicant enzyme activity in mouse liver.

본 연구는 천연물에서의 생리활성물질 동정의 일환으로 Ficus Carica Linnoeus(FCL)로부터 60kDa의 FCL glycoprotein(무화과 당단백질)을 추출한 후, 무화과 당단백질의 첨가에 따른 과산화 지질 라디칼 억제능력 및 생질의 혈장 콜레스테롤 수준과 간 해독효소활성의 개선효과를 평가하였다. In vitro에서 리놀렌산 자동산화반응에 기초한 과산화 지질 라디칼 억제능력을 실험한 결과, 무화과 당단백질을 섭취시킨 농도가 증가함에 따라 과산화 지질 라디칼 억제율은 증가하였다. 한편, 생쥐에게 14일 동안 무화과 당단백질을 50 및 100mg/kg 농도로 섭취시킨 그룹과 무화과 당단백질을 섭취시킨 후 Triton WR-1339를 투여한 생쥐 그룹에서 혈액 및 간조직을 채취하여 혈장 콜레스테롤의 수준변화 및 해독효소의 활성을 측정한 결과, 100mg/kg 농도로 무화과 단백질을 섭취시킨 그룹에서 TC와 LDL-콜레스테롤의 수준은 유의적 감소효과가 나타났다(p<0.05). 또한 Triton WR-1339에 의해 고지혈증이 유발된 생쥐그룹에서도 TC와 LDL-콜레스테롤 수준이 유의적 억제능력을 보였는데, 특히 100mg/kg 농도에서 그 개선 효과는 더욱 분명하였다(p<0.01). 간의 해독효소 중 항산화 기능을 하는 SOD, CAT 그리고 GPx의 활성은 모두 증가되었는데, 특히 GPx는 100mg/kg의 농도에서 유의성을 보이며 증가하였다(p<0.01). 따라서 이러한 결과를 종합하면, 무화과 당단백질이 해득효소의 활성을 증가시킴으로써 체내의 ROS의 수준을 감소시키고, 이러한 항산화 효과가 혈중 콜레스테롤의 수준을 감소시키는데 영향을 미친 것으로 사료된다.

Keywords

References

  1. Harrison DG. Endothelial function and oxidant stress. Clin. Cardiol. Suppl, 20: 11-11-17 (1997)
  2. Halliwell B, Gutteridge JM. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 186: 1-85 (1990) https://doi.org/10.1016/0076-6879(90)86093-B
  3. Ho YS, Crapo JD. Isolation and characterization of complementary DNAs encoding human manganese-containing superoxide dismutase. FEBS Lett. 229: 256-260 (1988) https://doi.org/10.1016/0014-5793(88)81136-0
  4. Deisseroth A, Dounce AL. Catalase: Physical and chemical properties, mechanism of catalysis, and physiological role. Physiol. Rev. 50: 319-375 (1970) https://doi.org/10.1152/physrev.1970.50.3.319
  5. Jones DP, Eklow L, Thor H, Orrenius S. Metabolism of hydrogen peroxide in isolated hepatocytes: relative contributions of catalase and glutathione peroxidase in decomposition of endogenously generated $H_2O_2$. Arch. Biochem. Biophys. 210: 505-516 (1981) https://doi.org/10.1016/0003-9861(81)90215-0
  6. Ha TY, Cho IJ, Seong KS, Lee SH. Effect of Cassia tora ethanol extract on the lipid levels of serum and liver in rats fed high cholesterol diet. J. Korean Soc. Food Sci. Nutr. 30: 1171-1176 (2001)
  7. Tall AR. Plasma high density lipoproteins: Metabolism and relationship to atherogenesis. J. Clin. Invest. 86: 379-384 (1990) https://doi.org/10.1172/JCI114722
  8. Law MR, Wald NJ. An ecological study of serum cholesterol and ischaemic heart disease between 1950 and 1990. Eur. J. Clin. Nutr. 48: 305-325 (1994)
  9. Witztum JL. The oxidation hypothesis of atherosclerosis. Lancet 344: 793-795 (1994) https://doi.org/10.1016/S0140-6736(94)92346-9
  10. Istvan E. Statin inhibition of HMG-CoA reductase: a 3-dimensional view. Atheroscler. Suppl. 4: 3-8 (2003)
  11. Chong PH, Boskovich A, Stevkovic N, Bartt RE. Statin-associated peripheral neuropathy: review of the literature. Pharmacotherapy 9: 1194-1203 (2004)
  12. Nam SM, Ham SS, Oh DH, Jung ME, Kang IJ, Chung CK. Effects of Eucommia ulmoides olive ethanol extract on lipid metabolism and antioxidant enzyme activities of rats feds high fat diet. J. Korean Soc. Food Sci. Nutr. 31: 796-801 (2002) https://doi.org/10.3746/jkfn.2002.31.5.796
  13. Jeong MR, Kim BS, Lee YE. Physicochemical characteristics and antioxidative effects of Korean figs (Ficus carica L.). J. East Asian Soc. Dietary Life 12: 566-573 (2002)
  14. Kim KH. Chemical components of Korean figs and storage stability. Korean J. Food Sci. Technol. 13: 165-169 (1981)
  15. Neville DM Jr, Glossmann H. Molecular weight determination of membrane protein and glycoprotein subunits by discontinuous gel electrophoresis in dodecyl sulfate. Methods Enzymol. 32: 92-102 (1974) https://doi.org/10.1016/0076-6879(74)32012-5
  16. Takao T, Kitatani F, Watanabe N, Yagi A, Sakata K. A sample screening method for antioxidants and isolation of several antioxidants produced by marine bacteria from fish and shellfish. Biosci. Biotech. Biochem. 58: 1780-1783 (1994) https://doi.org/10.1271/bbb.58.1780
  17. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18: 499-502 (1972)
  18. Tercyak AM. Determination of cholesterol and cholesterol esters. J. Nutr. Biochem. 2: 281-292 (1991) https://doi.org/10.1016/0955-2863(91)90089-N
  19. Burk RW, Diamondstone BI, Velapoldi RA, Menis O. Mechanisms of the Liebermann-Burchard and Zak color reactions for cholesterol. Clin. Chem. 20: 794-781 (1974)
  20. Beauchamp C, Fridovich I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44: 276-287 (1971) https://doi.org/10.1016/0003-2697(71)90370-8
  21. Thomson .JF, Nance SL, Tollaksen SL. Spectrophotometric assay of catalase with perborate as substrate. Proc. Soc. Exp. BioI. Med. 157: 33-35 (1978)
  22. Mohandas J, Marshall JJ, Duggin GG, Horvath JS, Tiller DJ. Differential distribution of glutathione and glutathione-related enzymes in rabbit kidney. Possible implications in analgesic nephropathy. Biochem. Pharmacol. 33: 1801-1807 (1984) https://doi.org/10.1016/0006-2952(84)90353-8
  23. Ding JL, Hsu JS, Wang MM, Tzen JT. Purification and glycosylation analysis of an acidic pectin methylesterase in jelly fig (Ficus awkeotsang) achenes. J. Agric. Food Chem. 50: 2920-2925 (2002) https://doi.org/10.1021/jf010845+
  24. Kimura Y, Miyagi C, Kimura M, Nitoda M, Kawai N, Sugimoto H. Structure features of N-glycans linked to royal jelly glycoprotein: Structure of high-mannose type, hybride type, and biantennary type glycans. Biosci. Biotechnol. Biochem. 64: 2109-2120 (2000) https://doi.org/10.1271/bbb.64.2109
  25. Goldfarb S. Rapid increase in hepatic HMG-CoA reductase activity and in vivo cholesterol synthesis after Triton WR 1339 injection. J. Lipid Res. 19: 489-494 (1978)
  26. Hirsch RL, Kellner A. The pathogenesis of hyperlipemia induced by means of surface-active agents. II. Failure of exchange of cholesterol between the plasma and the liver in rabbits given Triton WR 1339. J. Exp. Med. 104: 15-24 (1966)
  27. Moundras C, Behr SR, Demigne C, Mazur A, Remesy C. Fermentable polysaccharides that enhance fecal bile acid excretion lower plasma cholesterol and apolipoprotein E-rich HDL in rats. J. Nutr. 124: 2179-2188 (1994)
  28. Wolever TM, Jenkins DJ, Nineham R, Alberti KG. Guar gum and reduction of post-prandial glycaemia: effect of incorporation into solid food, liquid food, and both. British J. Nutr. 41: 505-510 (1979) https://doi.org/10.1079/BJN19790065
  29. Stedronsky ER. Interaction of bile acids and cholesterol with nonsystemic agents having hypocholesterolemic properties. Biochim. Biophys. Acta 1210: 255-287 (1994) https://doi.org/10.1016/0005-2760(94)90230-5
  30. Vote D, Voet JG. Biochemistry. 2nd Ed. John Wiley & Sons Inc., NY, USA. pp. 692-704 (1995)