Studies on the Thermomechanical Characteristics of the Blend Film of Chitosan/Gelatin

키토산/젤라틴 블랜드 필름의 열적특성에 관한 연구

  • Kim, Byung-Ho (Department of Food and Biotechnology, and Food and Bio-industrial Research Center, Hankyong National University) ;
  • Park, Jang-Woo (Department of Food and Biotechnology, and Food and Bio-industrial Research Center, Hankyong National University) ;
  • Hong, Ji-Hyang (Research Institute for Agriculture and Life Sciences, Seoul National University)
  • 김병호 (국립한경대학교 식품생물공학과 및 식품생물산업연구소) ;
  • 박장우 (국립한경대학교 식품생물공학과 및 식품생물산업연구소) ;
  • 홍지향 (서울대학교 농업생명과학연구원)
  • Published : 2005.08.31

Abstract

Compatability of films made of chitosan, gelatin, and their blends prepared by aqueous solution casting was investigated using a thermogravimetric analyzer(TGA) and a dynamic mechanical analyzer (DMA). TGA showed gelatin is more thermally stable than chitosan, and thermal stability of chitosan in blends was higher than that of pure chitosan due to interaction among functional groups of component polymers in blend. Glass transition temperature $(T_g)$ of blends was dependent on chitosan content of blends. Blend films exhibited good miscibility. Moisture and glycerol contents of blend strongly affected thermal properties of two component polymers.

본 연구에서는 키토산/젤라틴 블랜드 필름의 상용성을 평가하기 위하여 solution casting 방법을 이용하여 필름을 제조하였고, 키토산/젤라틴 블랜드 필름의 분자수준에서 블랜드 조성비율에 따른 유리전이온도의 변화를 측정하였다. 또한 블랜드 필름 제조시 가소제로 사용된 glycerol과 고분자내에 존재하는 수분이 키토산, 젤라틴 및 이들의 블랜드 필름에 미치는 영향을 조사하였다. TGA 분석결과, 젤라틴이 키토산 보다 열적 안정성이 우수하였고, 블랜드 내에서 두 구성고분자의 관능기 사이에 상호작용이 일어나기 때문에 블랜드 된 키토산 필름의 열적 안정성은 수분과 가소제가 첨가되지 않은 순수한 키토산 필름 보다 우수하였다. 또한 수분 및 가소제의 첨가유무에 따라서 고분자 주쇄의 분해개시 온도에는 영향을 미치지 않았다. DMA 분석결과, 키토산/젤라틴 블랜드 필름에서 키토산의 함량이 증가할수록 $T_g$는 변화하였다. 전체적인 tan ${\delta}$ 곡선을 관찰할 때 블랜드 조성비율에 따라 $T_g$는 단일 곡선을 나타내었고, 젤라틴의 함량이 증가함에 따라 $T_g$는 증가하였다. 젤라틴의 히드록시기와 키토산의 히드록시기 또는 아미노기 등의 극성기들 사이의 분자내 및 분자간에 존재하는 강한 상호작용에 의해서 키토산과 젤라틴 고분자들 사이에 우수한 상용성이 나타났다. 또한 키토산, 젤라틴 및 블랜드 필름에서 수분과 가소제는 두 구성고분자의 열적특성에 큰 영향을 미쳤지만, 블랜드의 상용성에는 크게 영향을 미치지 않았다. 따라서 키토산/젤라틴 블랜드 필름을 이용하여 의료부문이나 식품포장 등 다양한 분야에 응용을 할 수 있을 것으로 판단된다.

Keywords

References

  1. Krochta JM, Mulder-Johnsotn CD. Edible and biodegradable polymer films: challenges and opportunities. Food Technol. 51: 61-74 (1997)
  2. Deveaufort F, Quezada-Gallo J, Voilley A. Edible films and coatings: Tomorrow' s packagings: A review. Crit. Rev. Food Sci. Nutr. 38: 299-311 (1998) https://doi.org/10.1080/10408699891274219
  3. Guilbert S, Gontard N, Gorris LGM. Prolonging the shelt-life of perishable food products using biodegradable films and coatings. Lebensm.-Wiss. u-Technol, 29: 10-17 (1996) https://doi.org/10.1006/fstl.1996.0002
  4. Kim DH, Lee C, Kim KO, Lee YC. Physicochemical and sensory properties of water soluble chitosan. Korean. J. Food Sci. Technol. 31: 83-90 (1999)
  5. Cho JM, Park SK, Lee YS, Rhee CO. Effect of soy protein isolate and calcium chloride on the properties of water soluble chitosan film. J. Korean Soc. Agric. Chem. Biotechnol. 46: 113-116 (2003)
  6. Rathke TD, Hudson SM. Review of chitin and chitosan as fiber and film formers. J. Macromol. Sci. Part C: Rev. Macromol. Chem. Phys. 34: 375-386 (1994) https://doi.org/10.1080/15321799408014163
  7. Kienzle-Sterzer CA, Rodriguez-Sanchez D, Rha C. Mechanical properties of chitosan films: Effect of solvent acids. Makromol. Chem. 183: 1353-1359 (1982) https://doi.org/10.1002/macp.1982.021830528
  8. Caner C, Vergano PJ, Wiles JL, Chitosan film mehanical and permeation properties as affected by acid, plastciser and storage. J. Food Sci. 63: 1049-1059(1998)
  9. Kim JJ, Kim MJ, Jeon DW. Industrial application of chitin/chitosan. Polymer Sci. Technol. 8: 579-590 (1997) https://doi.org/10.1002/(SICI)1099-1581(199709)8:9<579::AID-PAT677>3.0.CO;2-8
  10. Lazaridou A, Biliaderis CG. Thermophysical properties of chitosan, chitosan-starch and chitosan-pullulan films near the glass transition. Carbohydr. Polymers 48: 179-190 (2002) https://doi.org/10.1016/S0144-8617(01)00261-2
  11. Arvanitoyannis IS, Nakayama A, Aiba S. Chitosan and gelatin based edible filma: state diagrams, mechanical and permeation properties. Carbohydr. Polymers 37: 371-382 (1998) https://doi.org/10.1016/S0144-8617(98)00083-6
  12. Begin A, Calsteren MR. Antimicrobial films produced from chitosan. Int. J. Biol. Macromol. 26: 63-67 (1999) https://doi.org/10.1016/S0141-8130(99)00064-1
  13. Hoagland PD, Parris N. Chitodan/pectin laminated films. J. Agric. Food Chem. 44: 1915-1919 (1996) https://doi.org/10.1021/jf950162s
  14. Wong DWS, Gastineau FA, Gregordki KS, Tillin SJ, Pavlath AE. Chitodan-lipid films: Microstructure and surface energy. J. Agric. Food Chem. 40: 540-544 (1992) https://doi.org/10.1021/jf00016a002
  15. Clark AH, Ross-Murphy SB. Structural and mechanical properties of biopolymer gels. Adv. Polymer Sci. 83: 57-192 (1987) https://doi.org/10.1007/BFb0023332
  16. Normand V, Muller S, Ravey JC, Parker A. Gelation kinetics of gelation: a master curve and network modeling. Macromolecules 33: 1063-1071 (2000) https://doi.org/10.1021/ma9909455
  17. Wu J, Chiu SC, Rearce EM, Kwei TK. Effects of phenolic compounds on gelation behavior of gelatin gels. J. Polym. Sci. Part A: Polym. Chem. 39: 224-231 (2000) https://doi.org/10.1002/1099-0518(20010101)39:1<224::AID-POLA250>3.0.CO;2-X
  18. Bigi A, Panzavolta S, Roveri N. Hydroxyapatite-gelatin films: a structural and mechanical characterization. Biomaterials 19: 739-744 (1998) https://doi.org/10.1016/S0142-9612(97)00194-4
  19. Bigi A, Bracci B, Cojazzi G, Panzavolta S, Roveri N. Drawn gelatin films with improved mechanical properties. Biomaterials 19: 2335-2340 (1998) https://doi.org/10.1016/S0142-9612(98)00149-5
  20. Sobral PJA, Menegalli FC, Hubinger MD, Roques MA. Mechanical, water vapor barrier and thermal properties of gelatin based edible films. Food Hydrocolloids 15: 423-432 (2001) https://doi.org/10.1016/S0268-005X(01)00061-3
  21. Sakurai K, Maegawa T, Takahashi T. Glass transition temperature of chitosan and miscibility of chitosan/poly(N-vinyl pyrrolidone) blends. Polymer 41: 7051-7056 (2000) https://doi.org/10.1016/S0032-3861(00)00067-7
  22. Park JS, Park JW, Ruckenstein E. Thermal and dynamic mechanical analysis of PYA/MC blend hydrogels. Polymer 42: 4271-4280 (2001) https://doi.org/10.1016/S0032-3861(00)00768-0
  23. Yoo SM, Park JS, Chung HY, Shim JY, Kim BH, Park JW, Effect of grape seed extract on methylcellulose film characteristics. Food Engin. Prog. 7: 242-247 (2003)
  24. Sato H, Tsuge S, Ohtani H, Aoi K, Takasu A, Okada M. Characterization of chitin based polymer hybrids by temperature-programmed analytical pyrolysis techniques. 1. Chitin graft poly(2methyl-2-oxazoline)/poly(vinyl chloride) blends. Macromolecules 30:4030-4037(1997) https://doi.org/10.1021/ma9702399
  25. Park JS, Shin KH. Studies on the miscibility of methy1cellulose/ chitosan blends by thermogravimetric analysis and thermodynamic mechanical analysis. J. Korea Soc. Packaging Sci. Tech. 8: 18-26 (2002)
  26. Arvanitoyannis I, Kolokuris I, Nakayama A, Yamamoto N, Aiba SI. Physico-chemical studies of chitosan-poly(vinyl alcohol) blends plasticized with sorbitol and sucrose. Carbohydr. Polym. 34: 9-19 (1997) https://doi.org/10.1016/S0144-8617(97)00089-1
  27. Kaymin IF, Ozolinya GA, Plisko YA. Investigation of temperature transitions of chitosan. Polym. Sci. USSR. 22: 171-177 (1980) https://doi.org/10.1016/0032-3950(80)90432-3
  28. Pizzoli M, Ceccorulli G, Scandola M. Molecular motions of chitosan in the solid state. Carbohydr. Res. 222: 205-213 (1991) https://doi.org/10.1016/0008-6215(91)89018-B
  29. Montes H, Mazeau K, Cavaille JY. Secondary mechanical relaxations in amorphous cellulose. Macromolecules 30: 6977-6984 (1997) https://doi.org/10.1021/ma9611329
  30. Kim SS, Kim SJ, Moon YD, Lee YM. Thermal characteristics of chitin and hydroxypropyl chitin. Polymer 35: 3212-3216 (1994) https://doi.org/10.1016/0032-3861(94)90124-4
  31. Park JS, Park JW, Ruckenstein E. A dynamic mechanical and thermal analysis of unplasticized and plasticized poly(vinyl alcohol)/methylcellulose blends. J. Polymer Sci. 80: 1825-1834 (2001)