Inhibition Effects of Natural Products on Osteoclast Differentiation

천연물 추출물의 파골세포 분화억제 효과 검색

  • Lee, Hyo-Jung (Department of Food Science & Technology, Keimyung University) ;
  • Yu, Mi-Hee (Department of Food Science & Technology, Keimyung University) ;
  • Lee, Syng-Ook (Department of Food Science & Technology, Keimyung University) ;
  • Kim, Hyun-Jeong (The Center for Traditional Microorganism Resources center, Keimyung University) ;
  • Lee, In-Seon (The Center for Traditional Microorganism Resources center, Keimyung University)
  • 이효정 (계명대학교 식품가공학과) ;
  • 유미희 (계명대학교 식품가공학과) ;
  • 이승욱 (계명대학교 식품가공학과) ;
  • 김현정 (계명대학교 전통미생물자원개발 및 산업화연구(TMR)센터) ;
  • 이인선 (계명대학교 전통미생물자원개발 및 산업화연구(TMR)센터)
  • Published : 2005.12.31

Abstract

In bone remodeling imbalances that are caused by increased bone resorption over bone formation lead to adult skeletal diseases. Thus, we have screened various natural products for their ability to regulate the differentiation of osteoclasts to propose candidates for the prevention or treatment of osteoporosis. Scutellaria baicalensis Georgi and Zizyphus Jujuba Miller var. extracts of 140 natural products inhibited the differentiation of RAW264.7 cells into osteoclast, as showed by the reduced number of tartrate resistant acid phosphatase(TRAP)-positive multinucleated cells and decreased TRAP activity.

여러 천연물 추출물 140종의 파골세포 분화처제효과 검색은 파골세포의 마커 enzyme인 TRAP활성으로 확인하였다. 그 결과 파고지$^{3}$, 지각$^{13}$, 금령자$^{6}$, 시호$^{9}$, 황연$^{69}$, 배양인삼$^{98}$, 구맥$^{26}$, 등 대부분의 추출물이 $100{\mu}g/mL$ 농도 이상에서는 높은 세포 독성을 보여서 파골분화 억제 정도를 확인 할 수 없었고 세포독성이 없는 농도를 선정하여 파골세포 분화억제 정도를 재검색한 결과는 천연물 중 파고지$^{3}$, 호두$^{21}$, 용안육씨$^{77}$, 황금$^{78}$, 정공등$^{37}$ 메탄올 추출물과 생대추과육$^{128}$, 콩나물$^{70}$ 열수 추출물은 비교적 낮은 농도에서도 30% 이하의 TRAP 활성을 보여 파골분화 억제 효과가 우수하게 나타났다. 이 중 전통 한약재인 황금$^{78}$ 메탄올 추출물과 과일류인 생대추과육$^{128}$ 열수 추출물이 $10{\mu}g/mL$의 낮은 농도에서도 가장 좋은 파골분화 억제 효과가 나타났다.

Keywords

References

  1. Hwang KK, Huh NK, Lee JH. Studies on the signaling molecules in RANK, an osteoclast differentiation receptor. Oral Biol. Res. 24: 245-254 (2000)
  2. Grigoriades AE, Wang ZQ, Cecchini MG, Hofstetter W, Felix R, Fleisch HA, Wagner EF. c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266: 443-448 (1994) https://doi.org/10.1126/science.7939685
  3. Togari A, Arakawa S, Arai M, Matsumoto S. Alteration of in vitro bone metabolism and tooth formation by zinc. Gene Pharmacol. 24: 1133-1140 (1993) https://doi.org/10.1016/0306-3623(93)90360-A
  4. Mok SK, Shin HS. The effects of prostaglandine and dibutyryl cAMP on osteoblastic cell activity and osteoclast generation. J. Wonkwang Dental Res. Int. 6: 43-62 (1996)
  5. Parfitt AM. Bone remodeling: relationship to the amount and structure of bone the pathogenesis and prevention of fractures. In: Riggs LB.: L.J Melton eds, Osteoporosis, cetiology, diagnosis and management. Reven press, New York, NY, USA. pp. 45-93 (1988)
  6. Oh HJ. Therapy of osteoporosis in climacteric. J. Korean Acad. Fam. Med. 21: 20-27
  7. Pole HAP, Felsenberg D, Hanley DA, Stenpan J, Munoz-Torres M, Wolkins TJ, Qui-sheng G, Galich M, Vandormael K, Yates AJ. Multinational placebo-controlled, randomised trial of the effects of Alendronate on Bone density and fracture risk in postmenopausal women with law bone mass: Results of the FOSIT. Osteoporosis Int. 9: 461-468 (1999) https://doi.org/10.1007/PL00004171
  8. Aldercreutz H, Mazur W. Phyto-estrogens in relation to cancer and other human health risks. Proc. Nutr. Soc. 55: 399-417 (1996) https://doi.org/10.1079/PNS19960038
  9. Boonen A, Broos P, Deqeker J. The prevention of treatment of age-related osteoporosis in the elderly by systemic recombinant growth factor therapy (rhIGF-I or rhRGF-${\beta}$): a perspective. J. Intl. Med. 242: 285-290 (1997) https://doi.org/10.1046/j.1365-2796.1997.00133.x
  10. Wattel A, Kamel S, Mentaverri R. Lorget F, Prouilet C. Petit JP, Fardelonne P, Brazier M. Potent inhibitory effect of naturally occurring cell death. Biochem. Biophys. Res. Commun. 292: 94-101 (2002) https://doi.org/10.1006/bbrc.2002.6622
  11. Lee YS. Effect of isoflavones on proliferation and oxidative stress of MC3T3-E1 osteoclast-like cells. Korean Soybean Digest 18: 35-42 (2001)
  12. Lee DS, Byun SY. Effects of the dietary mixture of eucommia ulmoides oliver on osteoporosis. Korean J. Biotechnol. Biol. 16: 614-619 (2001)
  13. Green LM, Reade JL, Ware CF. Rapid colometric assay for cell viability: Application to the quantitation of cytotoxic and growth inhibitory lympokines. J. Immunol. Meth. 70: 257 (1984)
  14. Hotokezaka H, Sakai E, Kanaoka K, Saito K, Matsuo KI, Kitaura H, Yoshida N, Nakayama K. U0126 and PD98059, specific inhibitors of MEK, accelerate differentiation of RAW 264.7 cells into Osteoclast-like cells. J. Biol. Chem. 277: 47366-47372 (2002) https://doi.org/10.1074/jbc.M208284200
  15. Kim HH, Kim JH, Kwak HB, Huang H, Han SH, Ha HI, Lee SW, Woo ER, Lee ZH. Inhibition of osteoclast differentiation and bone resorption by transhinone IIA isolated from Salvia miltiorrhiza Bunge. Biochem. Pharmacol. 67: 1647-1656 (2004) https://doi.org/10.1016/j.bcp.2003.12.031
  16. Park EK, Kim MS, Lee SH, Kim KH, Park JY, Kim TH, Lee IS, Woo JT, Jung JC, Shin HI, Choi JY, Kim SY. Furosin, an ellagitannin, suppresses RANKL-induced osteoclast differentiation and function through inhibition of MAP kinase activation and actin ring formation. Biochem. Biophys. Res. Commun. 325: 1472-1480 (2004) https://doi.org/10.1016/j.bbrc.2004.10.197
  17. Bochorakova H, Paulova H, Slanina J, Musil P, Taborska E. Main flavonoids in the root of Scutellaria baicalensis cultivated in Euroup and their comparative antiradical properties. Phytother. Res. 17: 640-644 (2003) https://doi.org/10.1002/ptr.1216
  18. Huang Y, Tsang SY, Tao X, Lau CW, Su YL, Chen ZY. Baicalin-induced vascular response in rat mesenteric artery: role of endothelial nitric oxide. Clin. Exp. Pharmacol. 29: 721-724 (2002) https://doi.org/10.1046/j.1440-1681.2002.03706.x
  19. Chi TS, Lim H, Park H, Kim HP. Effects of wogonin, a plant flavone from Scutellaria radix, on skin inflammation: in vivo regulation of inflammation-associated gene expression. Biochem. Pharmacol. 66: 1271-1278 (2003) https://doi.org/10.1016/S0006-2952(03)00463-5
  20. Ciesielska E, Gwardys A, Metodiewa D. Anticancer, antiradical and antioxidative actions of novel Antoksyd S and its major components, baicalin and baicalein. Anticancer Res. 22: 2885-2891 (2002)
  21. Ye F, Xui L, Zhang W, Zhang DY. Anticancer activity of Scutellaria baicalensis and its potential mechanism. J. Altem. Complement Med. 8: 567-572 (2002) https://doi.org/10.1089/107555302320825075
  22. Yuk CS, Sim JL, Lu GO, Kim HG, Nam JY. Oriental medicine II. Kwang-myung publishing Co., Seoul, Korea. p. 394 (1992)
  23. Rhee YK, Kim DH, Han MJ. Inhibitory effect of Zizyphi fructus on ${\beta}-glucuronidase$ and tryptophanase of human interestinal bacteria. Korean J. Food Sci. Technol. 30: 199-205 (1998)
  24. Na HS, Kim KS Lee MY. Effect of jujube methanol extract on the hepatoxicity in $CCl_4-treated$ rats. J. Korean Soc. Food Sci. Nutr. 25: 839-845 (1996)
  25. Lee YG Cho SY. Effect of jujube methanol extract on benzo(a)pyrene induced hepatotoxicity. J. Korean Soc. Food Sci. Nutr. 24: 127-132 (1995)
  26. Yook CS. Screening test on the components of the genus Zizyphus in Korea (in Korean). Korean J. Pharmacog. 3: 27-29 ( 1972)
  27. Lee SK. Studies on the constituents of the leaves of Zizyphus jujuba Mill. Ph. d. Thesis, Pusan National Univ., Seoul, Korea. (1989)
  28. Park MK, Park JH, Shin YG, Cho KH, Han BH, Park MH. Analysis of alkaloids in the seeds of Zizyphus jujuba by high performance liquid chromatography. Arch. Pharm. Res. 14: 99-102 (1991) https://doi.org/10.1007/BF02892010
  29. Blair HC, Jordan SE, Peterson TG, Barnes S. Variable effects of tyrosine kinase inhibition on avian osteoclastic activity and reduction of bone loss on ovariectomized rats. J. Cell Biochem. 61: 629-637 (1996) https://doi.org/10.1002/(SICI)1097-4644(19960616)61:4<629::AID-JCB17>3.0.CO;2-A
  30. Yamagishi T, Otsuka E, Hagiwara H. Reciprocal control of expression of mRNAs for osteoclast differentiation factor and OPG in osteogenic stromal cells by genistein: evidence for the involvement of topoisomerase II in osteoclastogenesis. Endocrinol. 142: 3632-3637 (2001) https://doi.org/10.1210/en.142.8.3632
  31. Rassi CM, Lieberherr M, Chaumaz G, Pointillart A, Cournot G. Down-regulation of osteoclast differentiation by daidzein via caspase 3. J. Bone Mineral Res. 17: 630-638 (2002) https://doi.org/10.1359/jbmr.2002.17.4.630
  32. Nakagawa H, Wachi M, Woo JT, Kato M, Kasai S, Takahashi F, Lee IS, Nagai K. Fenton reaction is primarily involved in a mechanism of (-)-epigallocatechin-3-gallate to induce osteoclastic cell death. Biochem. Biophys. Res. Commun. 292: 94-101 (2002) https://doi.org/10.1006/bbrc.2002.6622
  33. Woo JT, Nakagawa H, Notoya M, Yonezawa T, Udagawa N, Lee IS, Ohnishi M, Hagiwara H, Nagai K. Quercetin suppresses bone resorption by inhibiting the differentiation and activation of osteoclasts. Biol. Pharm. Bull. 27: 504-509 (2004) https://doi.org/10.1248/bpb.27.504
  34. Hall TJ, Achaeublin M, Jeker H, Fuller K, Chambers TJ. The role of reactive oxygen intermediates in osteoclastic bone resorption. Biochem. Biophys. Res. Commun. 207: 280-287 (1995) https://doi.org/10.1006/bbrc.1995.1184