Antioxidative Effect of Pine, Oak, and Lily Pollen Extracts

송화분, 참나무 및 백합화분 추출물의 항산화 효능

  • Kim, Seok-Joong (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Youn, Kwang-Sup (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Park, Hee-Sung (Department of Biotechnology and Bioindustry, Catholic University of Daegu)
  • 김석중 (대구가톨릭대학교 식품공학과) ;
  • 윤광섭 (대구가톨릭대학교 식품공학과) ;
  • 박희성 (대구가톨릭대학교 생명공학과)
  • Published : 2005.10.31

Abstract

Antioxidative activities of pine, oak, and lily pollen extracts were evaluated based on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging ability and inhibition of lipid peroxidation in animal tissues. Each pollen was extracted with 50% ethanol, 100% ethanol or water. DPPH radical-scavenging capacity of 50% ethanol extract ($EC_{50}$ 40.0 mg/mL) of pine pollen was higher than those of water (46.8 mg/mL) and 100% ethanol (131.2 mg/mL) extracts of pollen. Fifty percent ethanol (3,2 mg/mL) was also better than 100% ethanol (4.5 mg/mL) and water (8.3 mg/mL) for extraction of oak pollen. For preparation of lily pollen extracts, 100% ethanol was most effective (14.0 mg/mL), followed by water (18.8 mg/mL) and 50% ethanol (24.0 mg/mL). Oak pollen showed higher DPPH radical-scavenging activity than others. Lipid peroxidation in rat brain homogenate induced by ascorbate-Fe3+-EDTA and rat kidney homogenate were inhibited by water extracts of all pollens in dose-dependent manner. Extracts of oak and lily pollen showed higher lipid peroxidation inhibition than pine pollen extract. Polyphenol content was highest in oak pollen extract $(32.5{\pm}0.7\;{\mu}g/mg\;pollen)$, followed by lily extract $(25.9{\pm}1.4\;{\mu}g/mg\;pollen)$ and pine extract $(9.3{\pm}0.7\;{\mu}g/mg\;pollen)$.

송화분, 참나무화분 및 백합화분에 대한 항산화 효능을 DPPH radical 소거능 및 동물조직의 지질산화 억제효능을 이용하여 평가하였다. 각 화분을 ethanol, 50% ethanol 및 물을 이용하여 추출물을 조제한 후 이들에 대한 DPPH radical 소거능을 분석한 결과 50% 소거능을 나타내는 $EC_{50}$ 값은, 송화분의 경우 50% ethanol 추출물(40.0mg/mL)이 가장 낮게 나타났으며 물 추출물(46.8mg/mL), 100% ethanol 추출물(131.2mg/mL) 순 이었다. 참나무화분에서는 50% ethanol 추출물(3.2mg/mL), 100%, ethanol 추출물(4.5mg/mL), 물 추출물(8.3mg/mL) 순이었고 백합화분에서는 100% ethanol 추출물의 $EC_{50}$값이 14.0mg/mL로, 50% ethanol 추출물(24.0mg/mL) 및 물 추출물(18.8mg/mL)에 비해 가장 낮았다. 3 종의 화분에서는 참나무 화분의 DPPH radical 소거능이 우수한 것으로 나타났다. 한편 $ascorbate-Fe^{3+}-EDTA$에 의해 유도되는 뇌조직에서의 지질산화도는 송화분, 참나무화분, 백합화분 추출물에 의해 모두 농도 의존적으로 억제되었으며 신장에서의 지질산화도 억제되었다. 그리고 이 중에서 송화분보다는 참나무와 백합화분의 효능이 우수한 것으로 나타났다. 화분 추출물에 대한 총 polyphenol의 함량을 분석한 결과 참나무화분$(32.5{\pm}2.9{\mu}g/mg\;pollen)$이 백합화분$(25.9{\pm}1.4{\mu}g/mg\;pollen)$이나 송화분$(9.3{\pm}0.7{\mu}g/mg\;pollen)$보다 높게 나타났다.

Keywords

References

  1. Gonzalez Paramas AM, Gomez Barez JA, Cordon Marcos C, Garcia- Villanova RJ, Sanchez Sanchez J. HPLC-fluorimetric method for analysis of amino acids in products of the hive (honey and bee pollen). Food Chem. 95: 148-156 (2006) https://doi.org/10.1016/j.foodchem.2005.02.008
  2. Lee BY, Choi HD, Hwang JB. Components analysis of Korean pollens and pollen extracts. Korean J. Food Sci. Technol. 29: 869-875 (1997)
  3. Serra Bonbehi J, Escola Jorda R. Nutrient composition and microbiological quantity of honeybee-collected pollen in Spain. J. Agric. Food Chem. 45: 725-732 (1997) https://doi.org/10.1021/jf960265q
  4. Lynghein L, Scagnetti J. Bee Pollen-Nature's Miracle Health Food. Wilshire Book co, Hollywood, CA, USA. pp. 1-90 (1979)
  5. Abreu M. Food use of pollen in relation to human nutrition. Alimentaria 235: 45-46 (1992)
  6. Block G, Sinha R, Gridley G. Collection of dietary-supplement data and implication for analysis. Am. J. Clin. Nutr. 59 (Suppl. 1): S234-S239 (1994)
  7. Kroyer F, Hegedus N. Evaluation of bioactive properties of pollen extracts as functional dietary food supplement. Innov. Food Sci. Emerg. Technol. 2: 171-174 (2001) https://doi.org/10.1016/S1466-8564(01)00039-X
  8. Linskens HF, Jorde W. Pollen as food and medicine-A review. Econ. Bot. 51: 77-78 (1997) https://doi.org/10.1007/BF02910406
  9. Lew YS. A review on the efficacy of natural pollen described in an orient medical handbook Dong-Eul-Pogam. Korean J. Apiculture 3: 26-47 (1988)
  10. Dudov IA, Starodub NF. Antioxidant system of rat erythrocytes under conditions of prolonged intake of honeybee flower pollen load. Ukrainian Biochem. J. 66: 94-96 (1994)
  11. Uzbekova DG, Makarova VG, Khvoynitskaya LG, Slepnev AA. Evaluation of bee-collected pollen influence on lipid peroxidation, antioxidant system and liver function in old animal. J. Hepatol. 38 (suppl.2): 203 (2003)
  12. Lee YJ, Park MH, Bae MJ, Han JP. Effect of pine pollen on serum and liver lipids in rats in a fed high fat diet. J. Korean Soc. Food Nutr. 23: 192-197 (1994)
  13. Dudov IA, Momets AA, Artinkh VP, Starobub NF. Immunomodulatory effect of honeybee flower pollen loas. Ukrainian Biochem. J. 66: 91-93 (1994)
  14. Yeo JY, Lee YJ, Han JP. Effect of pine pollen proteins on rat liver injury induced $CCl_4$, J. Korean Soc. Food Nutr. 25: 34-38 (1996)
  15. Haro A, Lopez-Aliaga I, Lisbona F, Barrionuevo M, Alferez MJM, Campos MS. Beneficial effect of pollen andlor propolis on the metabolism of iron, calcium, phosphorus, and magnesium in rats with nutritional ferropenic anemia. J. Agric. Food Chem. 48: 5751-5722 (2000)
  16. Nagai T, Inoue R, Inoue H, Suzuki N. Scavenging capacities of pollen extracts from Cistus ladaniferus on autoxidation, superoxide radicals, hydroxyl radicals, and DPPH radicals. Nutr. Res. 22: 519-526 (2002) https://doi.org/10.1016/S0271-5317(01)00400-6
  17. Campos MG, Webby RF, Markham KR, Mitchell KA, Cunha AP. Age-induced diminution of free radical scavenging capacity in bee pollens and the contribution of constituent flavonoids. J. Agric. Food Chem. 51: 742-745 (2003) https://doi.org/10.1021/jf0206466
  18. Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine, 2nd ed., Glarendon Press, Oxford, UK. pp. 416-508 (1993)
  19. Frei B. Natural Antioxidants in Human and Disease. Academic Press, NY, USA. pp. 107-128 (1994)
  20. Eriksson CJ, Na A. Antioxidant agents in raw materials and processed foods. Biochem. Soc. Symp. 61: 221-234 (1996)
  21. Ramaranthnan N, Osawa T, Ochi H, Kawakishi S. The contribution of plant food antioxidants to human health. Trend. Food Sci. Technol. 6: 75-82 (1995) https://doi.org/10.1016/S0924-2244(00)88967-0
  22. Pless G, Frederiksen TJ, Garcia JJ, Reiter RJ. Pharmacological aspects of N-acetyl-5-methoxytryptamine (melatonin) and 6-methoxy-1,2,3,4-tetrahydro-beta-carboline (pinoline) as antioxidants: reduction of oxidative damage in brain region homogenates. J. Pineal Res. 26: 236-246 (1999) https://doi.org/10.1111/j.1600-079X.1999.tb00589.x
  23. Kim SJ, Reiter RJ, Qi W, Tan D, Cabrera J. Melatonin prevents oxidative damage to protein and lipid induced by ascorbate-$Fe^{3+}$EDTA: Comparison with glutathione and a-tocopherol. Neuroendocrinol. Lett. 21: 269-276 (2000)
  24. Esterbauer H, Cheeseman KH. Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Method. Enzymol. 186: 407-421 (1990) https://doi.org/10.1016/0076-6879(90)86134-H
  25. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD. Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. Measurement of protein using bicinchoninic acid. Anal. Biochem. 50: 76-85 (1985)
  26. Singleton VL, Joseph A, Rossi J. Colorimetry of total phenolics with phosphomolibdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16: 144-158 (1965)
  27. Campos MG, Mitchel K, Cunha A, Markham KR. A systematic approach to the characterization of bee pollens via their flavonoidlphenolic profiles. Phytochem. Anal. 8: 181-185 (1997) https://doi.org/10.1002/(SICI)1099-1565(199707)8:4<181::AID-PCA359>3.0.CO;2-A
  28. Serra Bonvehi J, Torrento MS, Centelles Lorente E. Evaluation of polyphenolic and flavonoid compounds in honeybee-collected pollen produced in Spain. J. Agric. Food Chem. 49: 1848-1853 (2001 ) https://doi.org/10.1021/jf0012300