Physicochemical Characteristics and Biological Activity of Irradiated Pectin Solution

감마선 조사 펙틴 용액의 이화학적 특성 및 생리활성 변화

  • Kang, Ho-Jin (Radiation Food Science & Biotechnology Team, Korea Atomic Energy Research Institute) ;
  • Jo, Cher-Oun (Radiation Food Science & Biotechnology Team, Korea Atomic Energy Research Institute) ;
  • Kwon, Joong-Ho (Department of Food Science and Technology, Kyungpook National University) ;
  • Jeong, Ill-Yun (Radiation Food Science & Biotechnology Team, Korea Atomic Energy Research Institute) ;
  • Byun, Myung-Woo (Radiation Food Science & Biotechnology Team, Korea Atomic Energy Research Institute)
  • 강호진 (한국원자력연구소 방사선식품생명공학연구팀) ;
  • 조철훈 (한국원자력연구소 방사선식품생명공학연구팀) ;
  • 권중호 (경북대학교 식품공학과) ;
  • 정일윤 (한국원자력연구소 방사선식품생명공학연구팀) ;
  • 변명우 (한국원자력연구소 방사선식품생명공학연구팀)
  • Published : 2005.10.31

Abstract

Pectin was dissolved in HCl, citric acid, and deionized distilled water (DW, 2%, v/v) and irradiated at different irradiation doses (2.5-50 kGy) by gamma ray to investigate its physicochemical characteristics and biological activity. Viscosity of pectin solution was significantly decreased by irradiation up to 10 kGy, then remained constant thereafter. Gamma-irradiation increased monosaccharide and polysaccharide levels up to 30-40 kDa. Electron donating ability of pectin solution was highest when DW was added and was increased by increasing irradiation dose (p<0.05). ${\beta}-Carotene$ bleaching assay revealed irradiation resulted in development of antioxidantive activity in pectin solution. Growth inhibition of cancer cell lines was observed in irradiated pectin solution in dose-dependent manner, with G36l showing the highest. Results suggested irradiation of pectin solution could be effective for preparation of functional pectin oligomer.

농산가공 부산물인 펙틴을 이용하여 기능성 펙틴 올리고머를 제조할 시 감마선 조사를 이용하는 기초 자료를 마련하고자 펙틴 용액(2%, 0.05N HCl, citrate, 증류수)을 0, 2.5, 5, 10, 20, 30 및 50kGy로 감마선 조사한 후 이화학적 특성과 생리활성을 확인하였다. 펙틴 용액의 점도는 조사선량 10kGy까지 급격히 감소하였고 그 이후의 선량에서는 조사선량별 유의적인 차이가 없었다(p>0.05). 분자량은 조사선량이 증가하면서 30-40kDa의 당과 단당류가 증가하였다. 펙틴 용액의 전자공여능을 측정해본 결과 모든 선량에서 증류수 처리 펙틴 용액이 가장 높은 값을 나타내었고, 펙틴 용액 농도별 전자공여능은 모든 선량에서 유의적으로 증가하였다(p>0.05). 펙틴 용액의 ${\beta}-carotene$ bleaching assay 결과 전자공여능의 결과와 같이 조사선량이 증가할수록 높은 ${\beta}-carotene$ 유지력을 나타내었으며 항산화지수(Al)도 선량이 증가함에 따라 증가하였다(p<0.05). 펙틴 용액의 5개 암세포주에 대한 생장 억제 효과는 조사 선량이 증가할수록 증가하였고 이 중 인체 유래 피부암 세포주인 G361의 생장억제 효과가 모든 처리구에서 가장 높았다. 본 실험 겉과 방사선 조사를 이용한 펙틴 용액의 저분자화를 확인할 수 있었고 생리활성이 증가하는 것으로 보아 방사선 조사가 기능성 펙틴 올리고머 제조기술에 효과적으로 사용될 수 있을 것으로 판단된다.

Keywords

References

  1. Shin KS. Various pharmacological acuviues of pectin and its potential application. Food Sci. Ind. 32: 91-101 (1999)
  2. Thakur BR, Singh RK, Handa AK. Chemistry and uses of pectina review. Cri. Rev. Food Sci. Nutr. 37: 47-73 (1997) https://doi.org/10.1080/10408399709527767
  3. Kay RM, Truswell AS. Effect of citrus pectin on blood lipids and faecal steroid excretion in man. Am. J. Clin. Nutr. 30: 171-175 (1977) https://doi.org/10.1093/ajcn/30.2.171
  4. McBurney MI, Thompson LU. In vitro fermentabilities of purified fiber supplements. J. Food Sci. 54: 347-350 (1989) https://doi.org/10.1111/j.1365-2621.1989.tb03077.x
  5. Yamaguchi F, Shimizu N, Hatanaka C. Preparation and physiological effect of low-molecular-weight pectin. Biosci. Biotech. Biochem. 58: 679-682 (1994) https://doi.org/10.1271/bbb.58.679
  6. Bishop PO, Pearce G, Bryant JE, Ryan CA. Isolation and characterization of the proteinase inhibitor-inducing factor from tomato leaves. Identity and activity of poly-and oligogalacturonide fragments. J. Biol. Chem. 259: 13172-13177 (1984)
  7. Iwasaki K, Inoun M, Matsubara Y. Continuous hydrolysis of peetate by immobilized endo-polygalacturonase in a continuously stirred tank reactor. Biosci. Biotech. Biochem. 62: 262-272 (1998) https://doi.org/10.1271/bbb.62.262
  8. Cho M, Kim BY, Rhim JH. Degradation of alginate solution and powder by $\gamma$-irradiation. Food Engin. Prog. 7: 141-145 (2003)
  9. Olano-Martin E, Mountzouris KC, Gibson GR, Rastall RA. Continuous production of pectic oligosaccharides in an enzyme membrane reactor. J. Food Sci. 66: 966-971 (2001) https://doi.org/10.1111/j.1365-2621.2001.tb08220.x
  10. Anonymous. Wholesomeness of irradiated food: a Report of a joint FAO/IAEA/WHO expert committee on food irradiation, WHO technical report series, 659, World Health Organization, Geneva (1981)
  11. Kang IJ, Byun MW, Yook HS, Bae CH, Lee JH, Kwon JH, Chung CK. Production of modified starches by gamma irradiation. Radiat. Physics. Chem. 54: 425-430 (1999) https://doi.org/10.1016/S0969-806X(98)00274-6
  12. Woods RT, Pikaev AK. Applied radiation chemistry: radiation processing. Wiley, NY, USA. p. 341 (1994)
  13. Kume T, Nagasawa F, Yoshii F. Utilization of carbohydrates by radiation processing. Radiat. Physics. Chem. 63: 625-527 (2002) https://doi.org/10.1016/S0969-806X(01)00558-8
  14. Choi WS, Ahn KJ, Lee OW, Byun MW, Park HJ. Preparation of chitosan oligomers by irradiation. Polym. Degrad. Stab. 78: 533-538 (2002) https://doi.org/10.1016/S0141-3910(02)00226-4
  15. Blois MS. Antioxidant activity determination by the use of a stable free radical. Nature 181: 1199-1200 (1958) https://doi.org/10.1038/1811199a0
  16. Matthaus B. Antioxidant activity of extracts obtained from residues of different oilseeds. J. Agric. Food. Chem. 50: 3444-3452 (2002) https://doi.org/10.1021/jf011440s
  17. Carmichael J, Degraff WG, Gazdar AF, Minna J, Michell JB. Evaluation of a tetrazolium based semiautomated colorimetric assay, assissment of chemosensitivity testing. Cancer Res. 47: 936-942 (1987)
  18. SAS Institute, Inc. SAS User's Guide. Statistical Analysis System Institute, Cary, NC, USA (1989)
  19. Aliste AJ, Vieira FF, Delmastro NL. Radiation effects on agar, alginates and carrageenan to be as food additives. Radiat. Phys. Chem. 57: 305-308 (2000) https://doi.org/10.1016/S0969-806X(99)00471-5
  20. Ananthaswamy HN, Vakil UK, Sreenivasan A. Some physicochemical changes in gamma-irradiated wheat. p. 347 In: Symposium on basic mechanisms in radiation biology and medicine. February II, New Delhi, India (1971)
  21. Nene SP, Vakil UK, Sreenivasan A. Effect of gamma radiation on physico-chemical characteristics of red gram (Cajanus cajan) starch. J. Food Sci. 40: 943-952 (1975) https://doi.org/10.1111/j.1365-2621.1975.tb02240.x
  22. Deschreider AP. Changes in starch and its degradation products on irradiating wheat flour with gamma rays. Starch/Staerke 12: 197-199 (1960)
  23. Wettasinghe M, Shahidi F. Evening primrose meal: a source of natural antioxidants and scavenger of hydrogen proxide and oxygen-derived free radicals. J. Agric. Food Chem. 47: 1801-1812 (1999) https://doi.org/10.1021/jf9810416
  24. Olano-Martin E, Rimbach GH, Gibson GR, Rastall RA. Pectin and pectin-oligosaccharides induce apoptosis in in vitro human colonic adenocarcinoma cells. Anticancer Res. 23: 341-346 (2003)