울릉도산 산채류 추출물의 총 폴리페놀 함량 및 항산화 활성

Total Polyphenol Contents and Antioxidant Activities of Methanol Extracts from Vegetables produced in Ullung Island

  • 이승욱 (계명대학교 식품가공학 전공) ;
  • 이효정 (계명대학교 식품가공학 전공) ;
  • 유미희 (계명대학교 식품가공학 전공) ;
  • 임효권 (계명대학교 식품가공학 전공) ;
  • 이인선 (계명대학교 전통미생물자원개발 및 산업화연구(TMR) 센터)
  • Lee, Syng-Ook (Department of Food Science and Technology, Keimyung University) ;
  • Lee, Hyo-Jung (Department of Food Science and Technology, Keimyung University) ;
  • Yu, Mi-Hee (Department of Food Science and Technology, Keimyung University) ;
  • Im, Hyo-Gwon (Department of Food Science and Technology, Keimyung University.) ;
  • Lee, In-Seon (The Center for Traditional Microorganism Resources, Keimyung University)
  • 발행 : 2005.04.30

초록

본 연구에서는 산채식물들을 이용한 새로운 기능성 소재의 개발에 우선하여 생산량과 소비량이 비교적 양호한 산채류 7종 즉, 물엉겅퀴, 쇠무릅, 울릉미역취, 섬고사리, 서덜취, 눈개승마 및 쇠비름을 선정하여 각 부위별 메탄올추출물을 제조한 후 이들의 항산화 활성을 검색하였다. 총 폴리페놀성 화합물의 함량은 $16.74-130.20{\mu}g/mg$으로 다양하게 나타났다. 섬고사리 잎과 울릉미역취 뿌리는 DPPH 와 ABTS+ 소거활성에서 각각 13.20과 $14.91{\mu}g/mL$. 43.93과 $29.08{\mu}g/mL$$RC_{50}$ 값을 보여 가장 높은 소거활성을 나타냈으며 또한 폴리페놀의 함량에 비례하여 소거활성이 증가하여 폴리페놀 함량과 free radical 소거활성은 깊은 연관성이 있음을 알 수 있었다. $H_{2}O_{2}$에 대한 소거활성은 섬고사리 잎과 뿌리 및 울릉미역취 뿌리에서 각각 72.83, 89, 99.62%로 높은 활성을 나타냈고 이러한 결과 역시 폴리페놀 함량과의 연관성을 나타냈다. 산채나물 추출물을 이용하여 linoleic acid에 대한 과산화 억제 효과를 ferric thiocyanate법으로 살펴본 결과, $100{\mu}g/mL$의 처리농도에서 모두 90% 이상의 산화억제 효과를 보였고, $10{\mu}g/mL$ 처리 농도에서는 울릉미역취 뿌리와 씨 그리고 서덜취 잎에서 각각 83.4, 87.4, 79.8%의 산학억제 효과를 보였다. Hydroxy radical에 의한 2-deoxy-D-ribose의 산화억제 효과는 $100{\mu}g/mL$의 처리농도에서 쇠무릎 잎과 씨, 물엉겅퀴 씨, 울릉미역취 씨는 116.9, 84.8, 94.3, 93.9%로 높은 저해율을 보였다. 것으로 나타났다. 그러므로 감마선 조사 및 저온저장($10^{\circ}C$)은 김밥재료 뿐만 아니라 김밥의 미생물 제어에 효과적인 것으로 확인되었다.와 비례하는 경향을 나타내었다. 또한 FA-swelling mica의 중금속 이온의 선택성은 Pb>Cu>Cd$\geq$Zn 순으로 나타났다.지 않았다.l years and a new type of transfer crane has been developed. Design concepts and control methods of a new crane will be introduced in this paper.and momentum balance was applied to the fluid field of bundle. while the movement of′ individual material was taken into account. The constitutive model relating the surface force and the deformation of bundle was introduced by considering a representative prodedure that stands for the bundle movement. Then a fundamental equations system could be simplified considering a steady state of the process. On the basis of the simplified model, the simulation was performed and the results could be confirmed by the experiments under various conditions.뢰, 결속 등 다차원의 개념에 대한 심도 깊은 연구와 최근 제기되고 있는 이론의 확대도 필요하다. 마지막으로 신뢰와 결속에 영향을

To discover new functional materials using edible plants, antioxidant activities of methanol extracts from various parts of seven wild vegetables were investigated in vitro. Total polyphenol contents, determined by Folin-Denis method, varied from 16.74 to $130.22{\mu}g/mg$. Radical-scavenging activities of methanol extracts were examined using ${\alpha},\;{\alpha}-diphenyl-{\beta}-pirrylhydrazyl$ (DPPH) radicals and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) assay. Inhibition effects on peroxidation of linoleic acid determined by ferric thiocyanate (FTC) method and on oxidative degradation of 2-deoxy-D-ribose in Fenton-type reaction system were dose-dependent. Athyrium acutipinulum Kodama (leaf and rood), Achyranthes japonica (Miq.) Nakai (seed), and Solidago virga-aurea var. gigantea Nakai (root) showed relatively high antioxidant activities in various systems.

키워드

참고문헌

  1. Goldberg I. Functional Foods. Chapman & Hall Press. New York, NY, USA. pp. 3-550 (1994)
  2. Sadaki O. The development of functional foods and materials. Bioindustry 13: 44-50 (1996)
  3. Fridorich I. The biology of oxygen radicals. Science 201: 875-881 (1978) https://doi.org/10.1126/science.210504
  4. Gardner DR, Fridovich I. Superoxide sensitivity of Escherichia coli 6-phosphogluconate dehydratase. J. Biol. Chem. 266: 1478-1483 (1991)
  5. Imlay lA, Linn S. DNA damage and oxygen radical toxicity. Science 232: 1302-1309 (1986)
  6. Choi DS, Go HY. Chemistry of Functional Food. JI-GU Publishing Co., Seoul, Korea. pp. 78-79. (1995)
  7. Kim TS, Kang SJ, Park WC. Changes in antioxidant and antioxidant enzymes activities of soybean leaves subjected to water stress. J. Korean Soc. Agric. Chem. BioI. 42: 246-251 (1999)
  8. Branen AL. Toxicology and biochemistry of butylated hydroxy anisole and butylated hydroxy toluene. J. Am. Oil Chem. Soc. 52: 59-63 (1975) https://doi.org/10.1007/BF02901825
  9. Ito N, Fukushima S, Hasegawa A, Shibata M, Ogiso T. Carcinogenecity of butylated hydroxy anisole in F344 rats. J. Cancer Inst. 70: 343-347 (1983)
  10. Kaba T, Morita K, Inoue T. Antimutagenic action of vegetable factor on the mutagenic principle of tryptophane pyrolysate. Mutation Res. 53: 351-353 (1978) https://doi.org/10.1016/0165-1161(78)90008-0
  11. Han KS, Ham SS, Jeong EH, Lee HK. Antimutagenic effects of the edible mountain herb juices against Trp-P-I and 2AF. J. Fd Hyg. Safety 7: 161-168 (1992)
  12. Kwon YJ, Kim KH, Kim HK. Changes of total polyphenol content and antioxidant activity of Ligularia fischeri extracts with different microwave-assisted extraction conditions. Korean J. Food Preser. 9: 332-337 (2002)
  13. Ham SS, Lee SY, Oh DH, Kim SH, Hong JG Development of Beverages Drinks Using Mountain Edible Herbs. J. Korean Soc. Food Sci. Nutr. 26: 92-97 (1997)
  14. Lee KS. Content analysis, intake estimation and physiological function of dietary fibers in Korean food. PhD thesis. Ewha Womans University, Seoul, Korea (1997)
  15. Singleton VL. Naturally ocurring food toxicants: phenolic substances of plant origin common in foods. Adv. Fd. Res. 27: 149-242(1981) https://doi.org/10.1016/S0065-2628(08)60299-2
  16. Yen GC, Chen HY, Peng HH. Evaluation of the cytotoxicity, mutagenicity and antimutagenicity of emerging edible plants. Food Chem. Toxicol. 39: 1045-1053 (2001) https://doi.org/10.1016/S0278-6915(01)00053-9
  17. Chan K, Islam MW, Kamil M, Radhakrishnan R, Zakaria MNM, habibullah M, Attas A. The analgesic and anti-inflammatory effects of Portulaca oleracea L. subsp. sativa (Haw) Celak. J. Ethnopharmacol. 73: 445-451 (2000) https://doi.org/10.1016/S0378-8741(00)00318-4
  18. Nieva Moreno MI, Isla MI, Sampietro AR, Vattuone MA. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J. Ethnopharmacol. 71: 109-114 (2000) https://doi.org/10.1016/S0378-8741(99)00189-0
  19. Blois MS. Antioxidant determinations by the use of a stable free radical. J. Agric. Food Chem. 25: 103-107 (1977) https://doi.org/10.1021/jf60209a051
  20. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, RiceEvans e. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 26: 1231-1237(1999) https://doi.org/10.1016/S0891-5849(98)00315-3
  21. Park SW, Chung SK, Park JC. Active oxygen scavenging activity of luteolin-7-O-${\beta}$-D-glucoside isolated from Humulus japonicus. J. Korean Soc. Food Sci. Nutr. 29: 1127-1132 (2000)
  22. Nakatani N, Kikuzaki H. A new antioxidative glucoside isolated from oregano (Origanum vulgare L). Agric. BioI. Chem. 51: 2727 -2781 (1987) https://doi.org/10.1271/bbb1961.51.2727
  23. Cheng Z, Li Y, Chang W. Kinetic deoxyribose degradation assay and its application in assessing the antioxidant activities of phenolic compounds in a Fenton-type reaction system. Analytica Chi mica Acta 478: 129-137 (2003) https://doi.org/10.1016/S0003-2670(02)01435-6
  24. Choi YM, Kim MH, Shin JJ, Park JM, Lee JS. The antioxidant activities of the some commercial teas. J. Korean Soc. Food Sci. Nutr. 32: 723-727 (2003) https://doi.org/10.3746/jkfn.2003.32.5.723
  25. Kim HJ, Jun BS, Kim SK, Cha JY, Cho YS. Polyphenolic compound content and antioxidative activities by extracts from seed, sprout and flower of safflower (Carthamus tinctorius L.). J. Korean Soc. Food Sci. Nutr. 29: 1127-1132 (2000)
  26. Miliauskas G, Venskutonis PR, Van Beek TA. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 85: 231-237 (2004) https://doi.org/10.1016/j.foodchem.2003.05.007
  27. Jung GT, Ju IO, Choi JS, Hong JS. The antioxidative, antimicrobial and nitrite scavenging effects of Schizandra chinensis RUPRECHT (Omija) seed. Korean J. Food Sci. Technol. 32: 928-935 (2000)
  28. Li XF, Li Y, Nam KW, Kim DS, Chio HD, Son BW. Screening of radical scavenging activity from the marine-derived fungus. Korean J. Pharmacogn. 33: 219-223 (2002)
  29. Ismail M, Manickam E, Danial AM, Rahmat A, Yahaya A. Chemical composition and anitioxidant activity of Strobilanthes crispus leaf extract. J. Nutr. Biochem. 11: 536-542 (2000) https://doi.org/10.1016/S0955-2863(00)00108-X
  30. Zainol MK, Abd-Hamid A, Yusol S, Muse R. Antioxidative activity and total phenolic compounds of leaf, root and petiole of four accessions of Centella asiatica (L.) Urban. Food Chem. 81: 575-581 (2003) https://doi.org/10.1016/S0308-8146(02)00498-3
  31. Paker L, Glazer AN. Oxygen radicals in biological systems. pp. 343-355. In: Methods in Enzymoiogy 186. Academic Press, London, UK (1990)
  32. Nandita S, Rajini PS. Free radical scavenging activity of an aqueous extract of potato peel. Food Chem. 85: 611-616 (2004) https://doi.org/10.1016/j.foodchem.2003.07.003