DOI QR코드

DOI QR Code

DMNQ S-52, a new shikonin derivative, inhibits lymph node metastasis via inhibition of MMPs production

  • Lee, Soo-Jin (Department of Physiology, College of Oriental Medicine, Sangji University,Department of Oncology, Graduate School of East-West Medical Science, Kyunghee University) ;
  • Kim, Sung-Hoon (Department of Oncology, Graduate School of East-West Medical Science, Kyunghee University)
  • Published : 2005.12.30

Abstract

Our previous study showed that a novel synthetic shikonin derivative, 6-(1-hydroxyimino-4-methylpentyl)5,8-dimethyoxy 1,4-naphthoquinone S-52 (DMNQ S-52) induced apoptosis. In the present study, we investigated its anti-metastatic activities as compared with shikonin because DMNQ S-52 was synthesized for overcoming weak points of shikonin such as high toxicity, low solubility and deleterious effects. DMNQ S-52 showed the weaker cytotoxicity $(IC_{50};\;12.3{\pm}1.6\;{\mu}M)$ against Lewis lung carcinoma (LLC) cells than that of shikonin $(IC_{50};\;4.2{\pm}1.1\;{\mu}M)$. DMNQ S-52, at non-toxic concentrations $(less\;than\;10\;{\mu}M)$, significantly inhibited the invasion and migration of LLC cells. DMNQ S-52 also significantly inhibited the production of MMP-9, MTl-MMP and uPAR. Moreover, daily i.p. administration of DMNQ S-52 at dose of 5 mg/kg in mice resulted in a potent inhibition of the primary tumor size of LLC in the lung as well as the metastasis of lymph nodes. These findings suggest that the DMNQ S-52 has therapeutic potential to inhibit metastasis via inhibition of MMP family and uPA/plasminogen system.

Keywords

References

  1. Ahmed N, Oliva K, Wang Y, Quinn M, Rice G. (2003) Downregulation of urokinase plasminogen activator receptor expression inhibits Erk signalling with concomitant suppression of invasiveness due to loss of uPAR-beta1 integrin complex in colon cancer cells. Brit. J. Cancer 89, 374-384. https://doi.org/10.1038/sj.bjc.6601098
  2. Andreasen PA, Kjoller L, Christensen L, Duffy MJ. (1997) The urokinase-type plasminogen activator system in cancer metastasis: a review. Int. J. Cancer 72, 1-22. https://doi.org/10.1002/(SICI)1097-0215(19970703)72:1<1::AID-IJC1>3.0.CO;2-Z
  3. Bhoumik A et al. (2000) An ATF2-derived peptide sensitizes melanomas to apoptosis and inhibits their growth and metastasis. J. Clin. Invest. 110, 643-650.
  4. Coussens LM, Fingleton B, Matrisian LM. (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295, 2387-2392. https://doi.org/10.1126/science.1067100
  5. Doki Y, Murakami K, Yamaura T, Sugiyama S, Misaki T, Saiki I. (1999) Mediastinal lymph node metastasis model by orthotopic intrapulmonary implantation of Lewis lung carcinoma cells in mice. Brit. J. Cancer 79, 1121-1126. https://doi.org/10.1038/sj.bjc.6690178
  6. Fidler I. (2001) Regulation of neoplastic angiogenesis. J. Natl. Cancer Inst. Monogr. 28, 10-14.
  7. Fiore E, Fusco C, Romero P, Stamenkovic I. (2002) Matrix metalloproteinase 9 (MMP-9/ gelatinase B) proteolytically cleaves ICAM-1 and participates in tumor cell resistance to natural killer cell-mediated cytotoxicity. Oncogene 21, 5213-5223. https://doi.org/10.1038/sj.onc.1205684
  8. Han JY, Kim HS, Lee SH, Park WS, Lee JY, Yoo NJ. (2003) Immunohistochemical expression of integrins and extracellular matrix proteins in non-small cell lung cancer: correlation with lymph node metastasis. Lung Cancer 41, 65-70. https://doi.org/10.1016/S0169-5002(03)00146-6
  9. Hersey P. (1999) Impediments to successful immunotherapy. Pharmacol. Ther. 81, 111-119. https://doi.org/10.1016/S0163-7258(98)00038-2
  10. Heussen C, Dowdle EB. (1980) Electrophoretic analysis of plasminogen activators in polyacrylamide gels Containing sodium dodecyl sulfate and copolymerized substrates. Anal. Biochem. 102, 196-202. https://doi.org/10.1016/0003-2697(80)90338-3
  11. Hirota J, Yoneda K, Osaki T. (1990)Basement membrane type IV collagen in oral squamous cell carcinoma. Head Neck 12, 400-405. https://doi.org/10.1002/hed.2880120505
  12. Ishikura H et al. (2001) Suppression of mediastinal metastasis by uracil-tegafur or cis-diamminedichloroplatinum(II) using a lymphogenous metastatic model in a human lung cancer cell line. Clin. Cancer Res. 7, 4202--4208.
  13. Ishiyama M, Tominaga H, Shiga M, Sasamoto K, Ohkura Y, Ueno K. (1996) A combined assay of cell viability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol. Pharm. Bull. 19, 1518-1520.
  14. Kaufmann SH, Earnshaw WC. (2000) Induction of apoptosis by cancer chemotherapy. Exp. Cell Res. 256, 42-49. https://doi.org/10.1006/excr.2000.4838
  15. Lee KH, Choi EY, Hyun MS, Kim JR. (2004) Involvement of MAPK pathway in hypoxia-induced up-regulation of urokinase plasminogen activator receptor in a human prostatic cancer cell line, PC3MLN4. Exp. Mol. Med. 36, 57-64.
  16. Lee SJ, Ohashi Y, Sakurai H Saiki I. (2003) TAC-101 inhibits intrahepatic metastasis of orthotopically implanted murine hepatocellular carcinoma. Cancer Lett. 198, 169-177. https://doi.org/10.1016/S0304-3835(03)00306-9
  17. Lee SJ, Sakurai H, Oshima K, Kim SH, Saiki I. (2003) Anti-metastatic and anti-angiogenic activities of a new matrix metalloproteinase inhibitor, TN-6b. Eur. J. Cancer 39, 1632-1641. https://doi.org/10.1016/S0959-8049(03)00375-7
  18. Macchiarini P, Fontanini G, Hardin MJ, Squartini F, Angeletti CA. (1992) Relation of neovascularisation to metastasis of non-small-cell lung cancer. Lancet 340, 145-146. https://doi.org/10.1016/0140-6736(92)93217-B
  19. McCarthy JB, Furcht LT. (1984) Laminin and fibronectin promote the haptotactic migration of B16 mouse melanoma cells in vitro. J. Cell. Biol. 98, 1474-1480. https://doi.org/10.1083/jcb.98.4.1474
  20. McCarthy JB, Palm SL, Furcht LT. (1983) Migration by haptotaxis of a Schwann cell tumor line to the basement membrane glycoprotein laminin. J. Cell. BioI. 97, 772-777. https://doi.org/10.1083/jcb.97.3.772
  21. Mignatti P, Rifkin DB. (1993) Biology and biochemistry of proteinases in tumor invasion. Physiol. Rev. 73, 161-195.
  22. Pitzel L, Ludemann S, Wuttke W. (2000) Secretion and gene expression of metalloproteinases and gene expression of their inhibitors in porcine corpora lutea at different stages of the luteal phase. Biol. Reprod. 62, 1121-1127. https://doi.org/10.1095/biolreprod62.5.1121
  23. Reddy KB, Nabha SM, Atanaskova N. (2003) Role of MAP kinase in tumor progression and invasion. Cancer Metastasis Rev. 22, 395-403. https://doi.org/10.1023/A:1023781114568
  24. Saito K, Oku T, Ata N, Miyashiro H, Hattori M, Saiki I. (1997) A modified and convenient method for assessing tumor cell invasion and migration and its application to screening for inhibitors. Biol. Pharm. Bull. 20, 345-348.
  25. Schoenfeld N, Bauer Mk, Grimm S. (2004) The metastasis suppressor gene C33/CD82/KAI1 induces apoptosis through reactive oxygen intermediates. FASEB J. 18, 1158-1160.
  26. Silvestri I et al. (2002) Engaged urokinase receptors enhance tumor breast cell migration and invasion by upregulating alpha(v)beta5 vitronectin receptor cell surface expression. Int. J. Cancer 102, 562-571. https://doi.org/10.1002/ijc.10744
  27. Song GY, Kim Y, You YJ, Cho H, Ahn BZ. (2001) Naphthazarin derivatives (VII): antitumor action against ICR mice bearing ascitic S-180 cells. Arch. Pharm. Res. 24, 35-38. https://doi.org/10.1007/BF02976490
  28. Stamenkovic I. (2000) Matrix metalloproteinases in tumor invasion and metastasis. Semin. Cancer Biol. 10, 415-433. https://doi.org/10.1006/scbi.2000.0379
  29. Takasu M, Tada Y, Wang JO, Tagawa M, Takenaga K. (1999) Resistance to apoptosis induced by microenvironmental stresses is correlated with metastatic potential in Lewis lung carcinoma. Clin. Exp. Metastasis 17, 409-416. https://doi.org/10.1023/A:1006632819086
  30. Terranova VP, Hujanen ES, Martin GR. (1986) Basement membrane and the invasive activity of metastatic tumor cells. J. Natl. Cancer Inst. 77, 311-316.
  31. Townson JL, Naumov GN, Chambers AF. (2003) The role of apoptosis in tumor progression and metastasis. Curr. Mol. Med. 3, 631-642. https://doi.org/10.2174/1566524033479483
  32. Tsuchida T, Yoshimura K, Shirayama Y, Kawamoto K. (1998) Colcemid-induced apoptosis of cultured human glioma: electron microscopic and confocal laser microscopic observation of cells sorted in different phases of cell cycle. Cytometry 31, 295-299. https://doi.org/10.1002/(SICI)1097-0320(19980401)31:4<295::AID-CYTO9>3.0.CO;2-I
  33. van Rens MT, Zanen P, Grutel de La Riviere A, Elbers HR, van Swieten HA, van Den Bosch JM. (2000) Survival in synchronous vs. single lung cancer: upstaging better reflects prognosis. Chest 118, 952-958. https://doi.org/10.1378/chest.118.4.952
  34. Wakisaka N, Semple JP, Welch WR, Folkman J. (1999) Association of vascular endothelial growth factor expression with angiogenesis and lymph node metastasis in nasopharyngeal carcinoma. Laryngoscope 109, 810-814. https://doi.org/10.1097/00005537-199905000-00024
  35. Weidner N et al. (1991) Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma. New Engl. J. Med. 324, 1-8. https://doi.org/10.1056/NEJM199101033240101
  36. Weiss L. (1992) Biomechanical interactions of cancer cells with the microvasculature during hematogenous metastasis. Cancer Metastasis Rev. 11, 227-235. https://doi.org/10.1007/BF01307179
  37. Woodhouse EC, Chuaqui RF, Liotta LA. (1997) General mechanisms of metastasis. Cancer 80, 1529-1537. https://doi.org/10.1002/(SICI)1097-0142(19971015)80:8+<1529::AID-CNCR2>3.0.CO;2-F