A Multi-microbial Biofungicide for the Biological Control against Several Important Plant Pathogenic Fungi

진균성 식물병해 방제를 위한 항생물질 생산 길항미생물의 복합제제화

  • Jung, Hee-Kyoung (Department of Applied Microbiology, College of Natural Resources, Yeungnam University) ;
  • Ryoo, Jae-Cheon (Department of Applied Microbiology, College of Natural Resources, Yeungnam University) ;
  • Kim, Sang-Dal (Department of Applied Microbiology, College of Natural Resources, Yeungnam University)
  • 정희경 (영남대학교 자연자원대학 응용미생물학과) ;
  • 류재천 (영남대학교 자연자원대학 응용미생물학과) ;
  • 김상달 (영남대학교 자연자원대학 응용미생물학과)
  • Published : 2005.03.31

Abstract

In order to develop a multi-microbial biofungicide against several important plant pathogenic fungi, strains were isolated from the phtophthora blight suppressive red-pepper field soil of Gyeongsangbuk-do, Korea. Strains AY1, AY6, AB1, BB2 and F4, which had strong antagonistic ability against Phytophthota capsici and Fusarium oxysporum, were selected for their involvement with strains of biocontrol fungicide. There were no antagonism among the selected strains and were compatible for making the biofungicide. Their antagonistic mechanisms, except for strain BB2, were an antibiosis by the production of antibiotic, while BB2 produced not only an antibiotic but also cellulase as an antagonistic mechanism against blight causing P. capsici. They were identified as Halobacterium sp. AB1, Xenorhadus sp. AY1, Bacillus sp. AY6, Bacillus sp. BB2, Zymomonas sp. F4 by various cultural, biochemical test and $Biolog^{TM}$ System 4.0. The highest levels of antifungal antibiotic could be produced after 48 hrs of incubation under the optimal medium which were 0.1% galactose, 0.1% $NaNO_2$, 5 mM $Na_2{\cdot}HPO_4$ (pH 5.5). The cultured multi-microbial biofungicide showed strong biocontrol activity against bacterial wilt disease and fusarium wilt disease in cucumber and tomato fields.

진균성식물병을 생물학적으로 방제할 수 있는 미생물제제의 개발을 위하여 경북 지역의 저병해 경작지 토양에서 고추역병균 Phytophthota capsici과 시들음병균 Fusarium oxysporum에 강력한 길항능을 가지며 균주 상호간에 공생이 가능한 AY1, AY6, AB1, BB2, F4, 5종의 균주를 선발하였다. 이들의 P. capsici에 대한 길항기작은 모두 내열성 저분자의 항균성 항생물질 생산에 의한 것이었으며, 이 중 BB2균주는 항생물질 생산능뿐만 아니라 고추역병균의 세포의벽 가수분해효소인 cellulase도 생산하여 다기능 길항기작을 보유하고 있었다. 선발된 5종 균주는 Halobacterium sp. AB1, Xenorhadus sp. AY1, Bacillus sp. AY6, Bacillus sp. BB2, Zymomonas sp. F4로 각각 동정되었으며, 이들은 0.1% galactose, 0.1% $NaNO_2$, 5 mM $Na_2HPO_4$가 포함된 배지에서 pH 5.5의 조건에서 48시간 배양했을 때 길항물질 생산능이 매우 우수하였고, 이 배양액을 1톤 규모의 발효탱크에 접종하고 대량배양 후 복합 미생물제제로 생산하였으며, 생산된 시제품의 액상 미생물제제는 경북 영천지역의 농가의 시험포장에서 3일 간격으로 3회 처리 해 본 포장시험에서 오이덩굴쪼김병, 방울토마토시드름병의 방제와 시금치잘록병의 방제 및 생육촉진에 탁월한 효과가 있었다.

Keywords

References

  1. Hong, S. H., Lam, J. S., Park, Y. B. and Ha, J. H. (1990) The optimum culture condition for the production of antibiotics KG-1167B produced by Clostrium sp. Kor. J. Microbiol. Biotechnol. 18, 292-265
  2. Yun, K. H., Lee, E. T. and Kim, S. D. (2001) Identificaton and antifungal antagonism of Chryseomonas luteola 5042 against Phytophthora capsici. Kor. J. Microbiol. Biotechnol. 29, 186-193
  3. Lee, E. T. and Kim, S, D. (2001) An antifungal substance, 2,4-diacetylphloroglucinol, produced from antagonistc bacterium Pseudomonas fluorencens 2112 against Phytophthora capsici. Kor. J. Microbiol. Biotechnol. 29, 37-42
  4. Kim, Y. S., Song, J. K., Moon, D. C. and Kim, S. D. (1997) Isolation and structure determination of antifungal antibiotics from Bacillus subtilis YB-70, a power biocontrol agent. Kor. J. Microbiol. Biotechnol. 25, 62-37
  5. Kim, K. Y. and Kim, S. D. (1997) Biological control of Pyricularaia oryzae blast spot with the antibiotic substance produced by Bacillus sp. KL-3. Kor. J. Microbiol. Biotechnol. 25, 396-402
  6. Kim, D. W., Do, K. S. and Choi, S. W. (2001) Antagonistic search for biological control of fusarium wilt in cymbium genus. J. Kor. Hort. Sci. 42, 581-586
  7. Lim, H. S. and Kim, S. D. (1994) The production and enzymatic properties of extracellular chitinase from Pseudomonas stutzeri YPL-1, as a biocontol agent. J. Microbiol. Biotecnol. 4, 134-140
  8. Paik, S. B. and Kim, D. W. (1995) Screening for phyllospheral antagonisitc microorganism for control of Red-pepper anthracnose. Kor. J. Mycol. 23, 190-195
  9. Tominaga, Y. and Tsujisaka, Y. (1976) Purification and some prosperities of two chitinase from Streptomyce sorientalis which lyse Phizopus cell wall. Agric. Biol. Chem. 40, 2325-2333
  10. Okazaki, K., Kato, F., Watanabe, N., Yasuda, S., Masui, Y. and Hayakawa, S. (1995) Purification and properties of two chitinase from Streptomyces sp. J-13-3. Biosci. Biotech. Biochem. 59, 1586-1587 https://doi.org/10.1271/bbb.59.1586
  11. Hadar, Y., Chet, I. and Heins, Y. (1979) Biological control of Rhizoctonia solani damping-off with wheat bran culture of Trichoderma harizianum. Phytopathology 69, 64-68 https://doi.org/10.1094/Phyto-69-64
  12. Harman, G. E., Chet, I. and Barker, R. (1980) Tricoderma hamatum effects on seed and seedling disease induced in radish and pea by Phythium spp. or Rhizoctonia solanl. Phytopathology 70, 1167-1172 https://doi.org/10.1094/Phyto-70-1167
  13. Ordentlich, A., Elad, Y. and Chet, I. (1988) The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology 78, 84-88
  14. Tom, R. A. and Carroad, P. A. (1998). Effect of reaction condition on hydrolysis of chitin by Serratia marcesens QMB 1466 chitinase. J. Food Sci. 46, 646-647 https://doi.org/10.1111/j.1365-2621.1981.tb04934.x
  15. Lim, H. S. and Kim, S. D. (1990) Antifungal mechanism of Pseudomonas stutzeri YPL-1 for biocontrol of Fusarium solani causing plant root rot. J. Microbiol. Biotechnol. 18, 81-88
  16. Lim, H. S. and Kim. S. D. (1994) The production and enzymatic properties of extracellular chitinase from Pseudomonas stutzeri YPL-1, as a biocontol agent. J. Microbiol. Biothechnol. 4, 134-140
  17. Watanabe, T., Oyanagi, W., Suzuki, K. and Tanaka, H. (1990) Chitinase system of Bacillus circulans WL-12 and importance of chitinase A1 in chitin degradation. J. Bacteriol. 172, 4017-4022
  18. Takeuchi, S., Hirayama, K., Ueda, K., Sasaki, H., and Yonehara., H., (1958) Blasticidin S, a new antibiotic. J. Antibiot. 11, 1-5
  19. Leoffler, W. Tschen, J. S., Venittanakom, N., Kugler, M., Knorpp, E., Hsieh, T. F. and Wu, T. G. (1986) Antifungal effects of bacilysin and fengymycin from Bacillus subtilis F-29- 3: a comparison with activaties of other Bacillus antibiotics. J. phytopathology 115, 204-213 https://doi.org/10.1111/j.1439-0434.1986.tb00878.x
  20. Paulitz, T. C., and Loper, J. E. (1991) Lack of a role for fluorescent siderophore production in the biological control of Phythium damping-off of cucumber by a strain of Pseudomonas putida. Phytopathology 81, 930-935 https://doi.org/10.1094/Phyto-81-930
  21. Holt, J. G., Krieg, N. R., Sneath, P. H. Staley, J. T. and Williams, S. T. (1994) In Bergey's manual of determinative bacteriology. (9th ed.), Williams Wikins