Effect of Sophora Subprostrata Fractions on Focal Ischemic Brain Damage Induced by Middle Cerebral Artery Occlusion in Rats(I)

광두근(廣豆根) 분획물이 중대뇌동맥폐쇄(中大腦動脈閉鎖)에 의한 뇌허혈손상에 미치는 효과(I) - 행동평가를 기준으로

  • Choi, Moon-Seok (Department of Anatomy-Pointology College of Oriental Medicine, Kyungwon University) ;
  • Kim, Youn-Sub (Department of Anatomy-Pointology College of Oriental Medicine, Kyungwon University)
  • 최문석 (경원대학교 한의과대학 해부경혈학교실) ;
  • 김연섭 (경원대학교 한의과대학 해부경혈학교실)
  • Published : 2005.06.25

Abstract

This research was performed to investigate protective effect of Sophora Subprostrata fractions against focal ischemic brain damage after middle cerebral artery(MCA) occlusion. Rats were divided into six groups: MCA-occluded group(Control); each administered groups with Sophora Subprostrata total phase(Total), Sophora Subprostrata Aqueous phase (Aqueous), Sophora Subprostrata BuOH phase(BuOH), and Sophora Subprostrata Alkaloid phase(Alkaloid) after MCA-occlusion; sham-operated group(Sham). The right MCA was occluded by A poly-L-lysine coated 4-0 nylon suture thread through the internal carotid artery permanently. Sophora Subprostrata and fractions were administered orally(5mg/ml) for 7 days after MCA-occlusion. The behavior of ischemic rats were examined at 24 hours, 3, 5 and 7 days after MCA-occlusion from the views of 4 different aspects: posture & balance tests(4 subtests), reflex tests(6 subtests), muscle-tone tests(3 subtests), and foot-fault test. The results showed that 1) in muscle tone test, Sophora Subprostrata total phase only increased reduced muscle tone function from 3 to 7 days, 2) in reflex test, Sophora Subprostrata total and Aqueous phase increased fast recovery from 24 hours and 3 days, 3) in posture & balance test, Sophora Subprostrata total and Aqueous phase increased fast recovery from 24 hours, and Sophora Subprostrata BuOH and Alkaloid phase increased posture & balance function from 3 days, but 4) in motor function test, Sophora Subprostrata did not show effective recovery compared with control group. In conclusion, Sophora Subprostrata has protective effects against brain damage at the early stage of focal cerebral ischemia. Sophora Subprostrata total and Aqueous phase produced more pronounced protective effect against focal ischemic brain damage.

Keywords

References

  1. 大韓病理學會 編. 病理學. 4판. 서울, 高文社, pp 1065-1073, 2000
  2. 송계용, 지제근, 함의근. 핵심병리학. 서울, 고려의학, pp 809-811, 1998
  3. Du, C., Hu, R., Csernansky, C.A., Hsu, C.Y., Choi, D.W. Very delayed infarction after mild focal cerebral ischemia: a role for apoptosis? J cereb Blood Flow Metab. 16(2):195-201, 1996.
  4. Kirino, T. Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res. 239(1):57-69, 1982.
  5. Garcia, J.H., Liu, K.F., Ho, K.L. Neuronal necrosis after middle cerebral artery occlusion in Wistar rats progresses at different time intervals in the caudoputamen and the cortex. Stroke. 26(4):636-642, 1995.
  6. 김종열. 허혈성 뇌졸중의 치료. 2000년도 대한응급의학회 춘계학술대회 및 연수강좌. 99-122, 2000.
  7. 김영석. 임상중풍학, 서울: 서원당, 303-308, 317-329, 1997.
  8. Longa, E.Z., Weinstein, P.R, Carlson, S., Cummins, R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 20(1):84-91, 1989.
  9. Belayev, L., Alonso, O.F., Busto, R., Zhao, W., Ginsberg, M.D. Middle cerebral artery occlusion in the rat by intraluminal sutrue. Stroke, 27(9):1616-1623, 1996.
  10. Borlongan, C.V., Randall, T.S., Cahill, D.W., Sanberg, P.R. Asymmetrical motor behavior in rats with striatal lesions as revealed by the elevated body swing test. Brain Res. 676(1):231-234, 1995.
  11. Clifton, G.L., Jiang, J.Y., Lyeth, B.G., Jenkins, L.W., Hamm, R.J., Hayes, R.L. Marked protection by moderate hypothermia after experimental traumatic brain injury. J Cereb Blood Flow Metab. 11(1):114-121, 1991.
  12. Ohlsson, A.L., Johansson, B.B. Environment influences functional outcome of cerebral infarction in rats. Stroke. 26(4):644-649, 1995.
  13. De Ryck, M., Van Reempts, J., Borgers, M., Wauquier, A., Janssen, A. J. Photochemical stroke model: flunarizine prevents sensorimotor deficits after infarcts in rats. Stroke. 20(10):1383-1390, 1989.
  14. Bona, E., Johansson, B.B., Hagberg, H. Sensorimotor function and neuropathology five to six weeks after hypoxia-ischemia in seven-day-old rats. Pediatr Res. 42(5):678-683, 1997.
  15. Garcia, J.H., Wagner, S., Liu, KF., Hu, X.J. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke. 26(4):627-634, 1995.
  16. Hernandez, T.D., Schallert, T. Seizure and recovery from experimental brain damage, Exp. Neurol, 102(3):318-324, 1998.
  17. Germano, I.M., Bartkowski, H.M., Cassel, M.E., Pitts, L.H. The therapeutic value of nimodipine in experimental focal cerebral ischemia. Neurological outcome and histopathological findings. J Neuro-surg. 67(1):81-87, 1987.
  18. Dinal, W.W. A foundation for analysis in the health science. Bioststisstics. 3, 136-146, 1983.
  19. 김영석. 중풍환자의 임상진료지침. 대한중풍학회 제1회연수 강좌 및 학술논문집. pp 9-20, 2000.
  20. 이미화, 박형숙, 최원철. 뇌졸중 치료제인 한약의 효과. 재활간호학회지 3(2):169-180, 2000.
  21. Belayev, L., Busto, R, Zhao, W., Fernandez, G., Ginsberg, M.D. Middle cerebral artery occlusion in the mouse by intraluminal suture coated with poly-L-lysine: neurological and histological validation. Brain Res. 833(2):181-190, 1999.
  22. Belayev, L., Alonso, O.F., Busto, R, Zhao, W., Ginsberg, M. D. Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model. Stroke. 27(9):1616-1622, 1996.
  23. Bederson, J.B., Pitts, L.R, Tsuji, M., Nishimura, M.C., Davis, RL., Bartkowski, H. Rat middle cerebral artery occlusion. Evaluation of the model and development of a neurologic examination. Stroke, 17(3):472-476, 1986.
  24. Shiino, A, Harada, K, Handa, J. Focal brain ischemia model in rats. an experimental study. Surg Neurol. 31(3):203-208, 1989.
  25. Zhang, Z.G., Zhang, L., Tsang, W., SoItanian-Zadeh, H., Morris, D., Zhang, R, Goussev, A, Powers, C, Yeich, T., Chopp, M. Correlation of VEGF and angiopoietin expression with disruption of blood-brain barrier and angiogenesis after focal cerebral ischemia. J Cereb Blood Flow Metab. 22(4):379-392, 2002.
  26. Wei, L., Erinjeri, J.P., Rovainen, C.M., Woolsey, T.A. Collateral growth and angiogenesis around cortical stroke. Stroke 32(9):2179-2184, 2001.
  27. Kataoka, Y., Cui, Y., Yamada, R, Utsunomiya, K., Niiya, H., Yanase, H., Nakamura, Y., Mitani, A, Kataoka, K., Watanabe, Y. Neo- vascularization with blood-brain barrier breakdown in delayed neuronal death. Biochem Biophys Res Commun. 273(2):637-641, 2000.
  28. Robinson, R.G., Shemaker, W.J., Schlumpf, M., Valk, T., Bloom, F. E. Effect of experimental cerebral infarction in rat brain on catecholamines and behaviour. Nature 255(5506):332-334, 1975.
  29. Grabowski, M., Brundin, P., Johansson, B.B. Paw-reaching, sensorimotor, and rotational behavior after brain infarction in rats. Stroke 24(6):889-895, 1993.
  30. Jaspers, R.M., Block, F., Heim, C. Sontag, K.H. Spatial learning is affected by transient occlusion of common carotid arteries (2VO): comparison of behavioural and histopathological changes after '2VO' and 'fourvessel-occlusion' in rats. Neurosci Lett. 117(1-2):149-153, 1990.
  31. Dietrich, W.O., Ginsberg, M.D., Busto, R., Watson, B.D. Photochemically induces cerebral infarction in the pat. 1. Time course of hemodynamic consequences, J. Cereb. Blood Flow Metab. 6(2):184-194, 1986.