Estimation of Denitrification in the Ganghwa Tidal Flat by a Pore Water Model

공극수 모델로 추정한 강화도 갯벌의 탈질산화 작용

  • Na, Tae-Hee (Department of Marine Science, Pusan National university) ;
  • Lee, Tong-Sup (Department of Marine Science, Pusan National university)
  • Published : 2005.02.28

Abstract

We measured nitrate and other nutrients in sediment pore waters retrieved from three sites at the southern upper-tidal flats of the Ganghwa Island. Denitrification rate is estimated by applying a simple 1-D model to the nitrate profiles. Results from Jangwha and Dongmak sites are $7.8{\sim}9.4{\times}10^{-7}{\mu}mol{\cdot}cm^{-2}{\cdot}sec^{-1}$, and $1.4{\sim}3.6{\times}10^{-7}{\mu}mol{\cdot}cm^{-2}{\cdot}sec^{-1}$, respectively. Rates are comparable to those reported around the world in an order of magnitude. Denitrification was lower in summer. The rates were about 1.5 times higher at site where the surface sediments consist of relatively coarser particles. This implies that particle size would control the reactant supply to the subsurface sediment. One may claim the denitrification as an evidence of the biogeochemical purification function of tidal flat. However, the purification seems not a general attribute of a tidal flat when whole system is scrutinized by a thermodynamic criterion. Currently the term 'tidal flat' is used when describing the diverse coastal wetlands such as salt marshes, sandy tidal flats and muddy tidal flats, which exhibit quite different ecological functions. Thus it is worthy of mentioning that the classification of coastal wetlands on the basis of sedimentological characteristics and biogeochemical functions should facilitate our understanding.

강화도 남단 갯벌의 상부조간대 세 정점에서 퇴적물 시료를 채취하여, 공극수에서 질산염 등 영양염을 분석하였다. 질산염의 공극수내 분포를 단순한 1차원 모델로 분석한 결과, 탈질산화율은 장화리에서 $7.8{\sim}9.4{\times}10^{-7}{\mu}mol{\cdot}cm^{-2}{\cdot}sec^{-1}$, 동막에서 $1.4{\sim}3.6{\times}10^{-7}{\mu}mol{\cdot}cm^{-2}{\cdot}sec^{-1}$로 추정되었다. 이는 타 지역에서 보고된 반응속도와 별 차이가 나지 않는 규모였다. 탈질산화율은 여름철에 낮았으며, 퇴적물 입도가 상대적으로 조립한 장소에서 1.5배 이상 빠르게 나타나서, 입도가 탈질산화 반응물질의 공급속도를 조절하는 중요한 인자 중의 하나로 판단되었다. 탈질산화는 무기질소 성분을 $N_2$로 영구적으로 갯벌의 계 외로 제거함으로써 지화학적 정화능으로 제시될 수 있지만, 열역학적 판단기준으로 보면 계에 대해 정화라는 개념을 부여하는 데에는 문제가 있다고 판단된다. 또한 현재 갯벌이란 용어가 생태환경적 기능이 상이한 염습지, 모래갯벌과 펄갯벌을 통칭하고 있어서 과학적인 분류가 시급한 것으로 나타났다.

Keywords

References

  1. 강시환, 1993. 폐쇄성 연안역의 수질관리기술 연구(I). 해양연구소, BSPN00205-613-2, 213 pp
  2. 국립해양조사원, 1998. 조석표. pp. 42-44
  3. 김은영, 1993. 서해안의 강화도와 영종도에 도래하는 섭금류의 생태. 경희대학교 석사학위논문, 경희대학교, 47 pp
  4. 농어촌진흥공사, 1996. 한국의 간척. 405 pp
  5. 수로국, 1981. 영종도에서 용매도 해도. No. 311
  6. 이찬원, 권영택, 1995. 퇴적오니 준설과 해양환경변화. 경남대학교 출판부, 215 pp
  7. 임현식, 홍재상, 1997. 진해만 저서동물의 군집생태 2. 우점종의 분포. 한국수산학회지, 30(2): 161-174
  8. 유재원, 홍재성, 양성렬, 박경, 2002. 갯벌의 수질 정화기능 연구 - Box model을 이용한 서해 곰소만 하전 갯벌의 질소 수지. 한국해양학회지, 7(4): 257-266
  9. 윤양호, 2000. 가막만 북부해역의 해양환경과 식물플랑크톤 군집의 변동 특성 2. 수질환경과 엽록소 a량의 변동 특성. 해양환경학회지, 9: 429-436
  10. 박용철, 최중기, 1993. 인천 연안 환경 연구. 인하대학교 해양과학과, 117 pp
  11. 정해진, 유영두, 김재성, 2002. 전북 새만금 남쪽 해역의 유해성 적조 발생 연구. 한국해양학회지, 7: 140-147
  12. 정회수, 1986. 반월.오이도 지역의 조간대 퇴적물과 공극수의 지화학적 특성에 관한 연구. 서울대학교 석사학위논문, 서울대학교 pp. 1963
  13. 최강원, 조영길, 최만식, 이복자, 현정호, 강정원, 정회수, 2000. 자연 정화작용 연구 I: 갯벌과 농지 상층수 중 유.무기 원소의 거동에 관한 예비 연구. 한국해양학회지, 5: 195-207
  14. 해양수산부, 1998. 우리나라의 갯벌. pp 24-25
  15. 한국해양연구소, 1998. 갯벌의 효율적 이용과 보존을 위한 연구. pp. 4-205
  16. 환경부, 1991. 91' 자연생태계 지역조사-서해안 간석지(강화도 남단) 조사. 195 pp
  17. Aller, R.C., 1980. Diagenesis processes near the sediment-water interface of Long Island Sound. I. Decomposition and nutrient element geochemistry(S, N, P). Adv. Geophys., 22: 237-350
  18. Aller, R.C, 2001. Transport and reactions in the bioirrigated zone. In: The Benthic Boundary Layer, edited by Boudreau, B.P. and B.B Jorgensen, Oxford Unversity Press, New York, pp. 269-301
  19. An, S.M., S.B. Joye, 2001. Enhancement of coupled nitrificationdenitrification by benthic photosynthesis in shallow estuarine sediments. Limnol. Oceanogr., 46: 47-62
  20. Berner, R.A., 1972. Sulfate reduction, pyrite formation, and the oceanic sulfur budget. In: The changing chemistry of the oceans, edited by Dyrssen, D. and D. Jagner, Almqvist and Wikell, pp. 347-361
  21. Berner, R.A., 1980. Early diagenesis. Princeton University Press, Princeton, pp. 1-241
  22. Billen, G., 1978. A budget of nitrogen recycling in North Sea sediments off the Belgian coast. Estuar. Coast. Mar. Sci., 7: 127-146 https://doi.org/10.1016/0302-3524(78)90070-1
  23. Callender, E. and D.E. Hammond, 1982. Nutrient exchange across the sediment-water interface in the Potamac river estuary. Est. Coast. Shelf Sci., 3: 395-413
  24. Crosby, S.A, G.E. Millward, E.I. Butler, D.R. Turner and M. Whitfield, 1984. Kinetics of phosphate adsorption by iron oxyhydroxides in aqueous systems. Est. Coast. Shelf Sci., 19: 257-270 https://doi.org/10.1016/0272-7714(84)90069-6
  25. Emerson, S., J. Jahnkey, M. Bender, P. Forelich, G. Klinkhammer, C. Bowser And G. Setlock, 1980. Early diagenesis in sediments from the Eastern Equatorial Pacific. I. Pore water nutrients and carbonate results. Earth Planet. Sci. Lett., 49: 57-80 https://doi.org/10.1016/0012-821X(80)90150-8
  26. Eyre, B. and J.P. Ferguson, 2002. In: Sediment biogeochemical indicators for defining sustainable nutrient loads to coastal ecosystems, Coastal Biogeochemistry Southern Cross University, pp. 101-104
  27. Folk, R.L., 1954. The distinction between grain size and mineral composition in sedimentary rock nomenclature. G. Geol., 62: 334-359
  28. Folk, R.L., 1974. Petrology of Sedimentary Rocks. Hemphill Publishing Company, 182 pp
  29. Folk, R.L. and W.C. Ward, 1957. Brazos river bar: A study in the significance of grain size parameters. J. Sdiment. Petrol., 27: 3-26 https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
  30. Froelich, F.N., G.P. Klinkhaminer, M.L. Bender, N.A Luedtke, G.R. Heath, D. Cullen, P. Dauphin, D. Hammond, B. Hartman and V. Maynard, 1979. Early oxidation of organic matter in pelagic sediments of the easthem equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta., 43: 1075-1090 https://doi.org/10.1016/0016-7037(79)90095-4
  31. Goloway, F. and Bender, M., 1982. Diagenesis models of interstitial nitrate profiles in deep sea suboxic sediments. Limnol. Oceanogr., 27: 624-638 https://doi.org/10.4319/lo.1982.27.4.0624
  32. Hall, J., S.V. Smith and P.R. Boudreau (eds.) 1996. International Workshop on Continental Shelf Fluxes of Carbon, Nitrogen and Phosphorus. LOICZ Reports & Studies No.9, ii + 50 pp. LOICZ, Texel, The Netherlands
  33. Heggie, D.T., G.W. Skyring, J. Orchardo, A.R Longmore, G.J. Nicholson and W.M. Berelson, 1999b. Denitrification and denitrifying efficiencies in sediments of Port Phillip Bay: direct determinations of biogenic N2 and N-metabolite fluxes with implications for water quality. Marine Freshwater Research, 50: 589-596 https://doi.org/10.1071/MF98054
  34. Howarth, R.W, R. Marino, J. Lane, J.J. Cole, 1988. Nitrogen fixation in freshwater, estuarine and marine ecosystems. I. Rates and Importance. Limnol Oceanogr., 33: 669-687 https://doi.org/10.4319/lo.1988.33.4_part_2.0669
  35. Jahnkey, R.A., S.R. Emerson and J.W. Murray, 1982. A model of oxygen reduction, denitrification, and organic matter mineralization in marine sediments. Limnol. Oceanogr., 27: 610-623 https://doi.org/10.4319/lo.1982.27.4.0610
  36. Kaplan, W, I. Valiela and J.M. Teal, 1979. Denitrification in a salt marsh ecosystem. Limnol. Oceanogr., 24: 726-734 https://doi.org/10.4319/lo.1979.24.4.0726
  37. Kelderman, P., 1984. Nutrient concentration in the interstitial water of lake Grevelingen redistribution and benthic primary production processes. Neth. J. Sea Res., 18: 312-336 https://doi.org/10.1016/0077-7579(84)90008-5
  38. Koide, I. and A. Hattori, 1979. Estimation of denitrification in sediments of the Bering Sea shelf. Deep- Sea Res., 26: 409-411 https://doi.org/10.1016/0198-0149(79)90054-2
  39. Lee, T.H., S.J. Go, S.H. Huh and T.S. Lee, 1999. A Light-Weight Spring-Driven and Hydraulically-Damped Multipe Piston Corer. J. Korean. Soc. Oceanogr., 34(3): 179-183
  40. Li, Y. and S. Gregory, 1974. Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Acta., 38: 703-712 https://doi.org/10.1016/0016-7037(74)90145-8
  41. Meysman, F.J.R, B.P. Boudreau and J.J. Middelburg. 2003. New developments in the modeling of bioturbation in aquatic sediments: Relations between local, non-local, discrete and continuous models. In: Proceedings of a Workshop on Biogeochemistry of Tidal Flats, edited by Jurgen Rullkotter, Hanse Institute of Advanced Study, Germany, pp. 91-93
  42. Nembrini, G., A. Capobianco, J. Garcia and J.M. Jacquet, 1982. Interaction beween interstitial water and sediment in two cores of Lac Leman, Switzerland. Hydrobillogia, 92: 363-375
  43. Soetaret, K., J.J. Middelburg, P.M. Herman and K. Buis, 2000. On the coupling of benthic and pelagic biogeochemical models. Earth-Sci. Rev., 51: 173-201 https://doi.org/10.1016/S0012-8252(00)00004-0
  44. Stummn W. and J.J. Morgan, 1981. Aquatic chemistry (2nd ed.), Johns Wiley & Sons., Chichester, 648 pp
  45. Ullman, W.J. and R.C. Aller, 1982. Diffusion coefficients in nearshore marine sediments. Limnol. Oceanogr., 27: 552-556 https://doi.org/10.4319/lo.1982.27.3.0552
  46. Vanderborght, J.P, R. Wollast and G. Billen, 1977a. Kinetic models of diagenesis in disturbed sediments. Part 1. Mass transfer properties and silica diagenesis. Limnol. Oceanogr., 22: 787-793 https://doi.org/10.4319/lo.1977.22.5.0787
  47. Vanderborght, J.P., R. Wollast and G. Billen, 1977b. Kinetic models of diagenesis in disturbed sediments. Part 2. Nitrogen diagenesis. Limnol. Oceanogr., 22: 794-803 https://doi.org/10.4319/lo.1977.22.5.0794