A Grub (Protaetia brevitarsis seulensis) Rearing Technique Using Cellulose-digesting Bacteria and Natural Recycling of Rearing Byproduct to an Organic Fertilizer

셀룰로오스 분해균을 이용한 흰점박이꽃무지(Protaetia brevitarsis seulensis) 사육과 부산물 응용 기술

  • Kang, Sang-Jin (Department of Agricultural Biology, Andong National University) ;
  • Park, Chun-Woo (Green Agrotech Inc.) ;
  • Han, Sang-Chan (Department of Agricultural Biology, Andong National University) ;
  • Yi, Young-Keun (Department of Agricultural Biology, Andong National University) ;
  • Kim, Yong-Gyun (Department of Agricultural Biology, Andong National University)
  • 강상진 (안동대학교 생명자원과학부) ;
  • 박천우 ((주)그린아그로텍) ;
  • 한상찬 (안동대학교 생명자원과학부) ;
  • 이영근 (안동대학교 생명자원과학부) ;
  • 김용균 (안동대학교 생명자원과학부)
  • Published : 2005.09.01

Abstract

Cellulose-digesting bacteria were isolated from hindgut of Allomyrina dichotoma (Coleoptera: Dynastidae). The bacterial isolates were identified as Yersinia sp. and Bacillus sp. The addition of the identified bacteria to diet increased growth rate of the cetoniid beetle, Protaetia brevitarsis senlensis (Coleoptera: Cetoniidae), probably by digesting cellulose nutrient contained in the oak tree sawdust diet. An additive of wheat flour at more than 10% to the sawdust diet significantly enhanced growth of P. brevitarsis senlensis. Trimmed branches of apple trees have been disposed in the apple farms and could be used for a diet component of the cetoniid beetle when the cellulose-digesting bacteria were mixed with the derived-sawdust. Resulting manure from mass rearing of P. brevitarsis senlensis contained high organic matters and trace amounts of toxic metals. When the manure were splayed on soil, it was effective as a natural compost and significantly stimulated lettuce growth. This research suggests a model technology to use cellulose-digesting bacteria to use for culturing grub, which results in natural recycles of trimmed branches in apple farms as grub diet, and to use grub manure as a natural compost.

장수풍뎅이(Allomyrina dichotoma(Coleoptera: Dynastidae)) 후장에서 셀룰로오스 분해균을 분리하였다. 분리된 두 세균은 각각 Yersinia와 Bacillus 속으로 동정되었다. 이 두 세균의 셀룰로오스 분해능력은 참나무 톱밥으로 사육되는 흰점박이꽃무지(Protaetia brevitarsis senlensis (Coleoptera: Cetoniidae))의 성장을 촉진시켰다. 이때 먹이 톱밥에 10% 이상의 밀가루를 첨가할 경우, 흰점박이꽃무지의 발육은 더욱 증진되었다. 한편 동정된 셀룰로오스 분해균을 사과원 전정목 톱밥에 첨가할 경우, 흰점박이꽃무지는 이를 먹이원으로 성장하였다. 이들 굼벵이의 대량사육에 따른 배설물은 높은 유기물 함량과 극소량의 독성 중금속을 함유하여 퇴비로서의 기능을 보유하였다. 이 굼벵이 배설물을 상추 재배지에 투입할 경우 상추발육을 촉진시켰다. 본 연구는 장수풍뎅이 유래 셀룰로오스 분해균을 이용하여 굼벵이 사육을 도모하는 데 일차 응용성을 보여주었으며, 이를 통해 부차적으로 사과원 폐목과 굼벵이 배설물의 자연 순환 모델을 제시하였다.

Keywords

References

  1. Bayon, C. and J. Mathelin. 1980. Carbohydrate fermentation and by-product absorption studied with labelled cellulose in Oryctes nasicornis larvae (Coleoptera: Scarabaeidae). J. Insect Physiol. 26: 819-828 https://doi.org/10.1016/0022-1910(80)90098-0
  2. Brauman, A. 2000. Effect of gut transit and mound deposit on soil organic matter transformations in the soil feeding termite: a review. Eur. J. Soil Biol. 36: 117-125 https://doi.org/10.1016/S1164-5563(00)01058-X
  3. Brauman, A., D.E. Bignell and I. Tayasu. 2000. Soil-feeding termites: biology, microbial associations and digestive mechanisms. pp. 233-259. In Termites: evolution, sociality, symbiosis, ecology, eds. T. Abe, D.E. Bignell and M. Higashi. Kluwer Academic Publishers, Dordrecht, The Netherlands
  4. Breznak, J.A. and A. Brune. 1994. Role of microorganisms in the digestion of lignocellulose by termites. Annu. Rev. Entomol. 39: 453-487 https://doi.org/10.1146/annurev.en.39.010194.002321
  5. Brune, A. 1998. Termite guts: the world's smallest bioreactors. Trends Biotechnol. 16: 16-21 https://doi.org/10.1016/S0167-7799(97)01151-7
  6. Cazemier, A.E., J.C. Verdoes, F.A.G. Reubsaet, J.H.P. Hackstein, C. van der Drift and J.M. Op den Camp. 2003. Promicromonospora pachnodae sp. nov., a member of the (hemi)cellulolytic hindgut flora of larvae of the scarab beetle Pachnoda marginata. Antonie van Leeuwenhoek 83: 135-148 https://doi.org/10.1023/A:1023325817663
  7. Choi, J.S., J.K. Hwang, C.T. Kim and D.S. Dong. 1996. Enzymatic solubilization of thermally treated Jujube tissues. Food Ind. Nut. 1: 49-79
  8. Egert, M., B. Wagner, T. Lemke, A. Brune and M.W. Friedrich. 2003. Microbial community structure in midgut and hindgut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl. Environ. Microbiol. 69: 6659-6668 https://doi.org/10.1128/AEM.69.11.6659-6668.2003
  9. Grayson, J.M. 1958. Digestive tract pH of six species of Coleoptera. Ann. Entomol. Soc. Am. 51: 403-405 https://doi.org/10.1093/aesa/51.4.403
  10. Holt, J.G., N.R. Krieg, P.A. Sneath, J.T. Stanley and S.T. Williams. 1994. Bergey's manual of determinative bacteriology. Williams & Wilkins, Baltimore
  11. Hong, S.P. and D.S. Kim. 1998. Chitosanolytic characteristics of cellulase from Trichoderma viride and Trichoderma reesei. Korean J. Food Sci. Tech. 30: 245-252
  12. Kim, Y.K. and S.Y. Ahn. 1996. The effect of cellulase treatment on the physiochemical properties of rice and the texture of cooked rice. Korean J. Food Sci. Tech. 28: 720-729
  13. Lavelle, P., D. Bignell, M. Lepage, V. Wolters, P. Roger, P. Ineson, O.W. Heal. 1997. Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur. J. Soil Biol. 33: 159-193
  14. Lee, S.C. 1997. Agricultural development strategy in Bong-Wha country. Korean J. Agri. Ext. 4: 195-199
  15. Lee, Y.K. 2000. Laboratory manual for plant bacterial pathology. 110 pp. Andong National University. Agricultural Science and Technology Institute, Andong
  16. Lemke, T., U. Stingl, M. Egert, M.W. Friedrich and A. Brune. 2003. Physicochemical conditions and microbial activities in the highly alkaline gilt of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl. Environ. Microbiol. 69: 6650-6658 https://doi.org/10.1128/AEM.69.11.6650-6658.2003
  17. Lo, N., H. Watanabe and M. Sugimura. 2003. Evidence for the presence of a cellulase gene in the last common ancestor of bilaterian animals. Proc. R. Soc. Lond. B 270: S69-S72
  18. Park, Y., K. Kim and Y. Kim. 2002. A pathogenic bacterium, Enterococcus faecalis, to the beet armyworm, Spodoptera exigua. J. Asia-Pacific Entomol. 5: 221-225 https://doi.org/10.1016/S1226-8615(08)60156-9
  19. SAS Institute, 1988. SAS/STAT user's guide, Release 6.03, Ed. Cary, N.C
  20. Wolters, V. 2000. Invertebrate control of soil organic matterstability. Biol. Fertil. Soils 31: 1-19 https://doi.org/10.1007/s003740050618