DOI QR코드

DOI QR Code

Modeling of in Silico Microbe System based on the Combination of a Hierarchical Regulatory Network with Metabolic Network

계층적 유전자 조절 네트워크와 대사 네트워크를 통합한 가상 미생물 시스템의 모델링

  • 이성근 (부산대학교 화학공학과) ;
  • 한상일 (부산대학교 화학공학과) ;
  • 김경훈 (부산대학교 화학공학과) ;
  • 김영한 (동아대학교 화학공학과) ;
  • 황규석 (부산대학교 화학공학과)
  • Published : 2005.10.01

Abstract

FBA(flux balance analysis) with Boolean rules for representing regulatory events has correctly predicted cellular behaviors, such as optimal flux distribution, maximal growth rate, metabolic by-product, and substrate concentration changes, with various environmental conditions. However, until now, since FBA has not taken into account a hierarchical regulatory network, it has limited the representation of the whole transcriptional regulation mechanism and interactions between specific regulatory proteins and genes. In this paper, in order to solve these problems, we describe the construction of hierarchical regulatory network with defined symbols and the introduction of a weight for representing interactions between symbols. Finally, the whole cellular behaviors with time were simulated through the linkage of a hierarchical regulatory network module and dynamic simulation module including FBA. The central metabolic network of E. coli was chosen as the basic model to identify our suggested modeling method.

Keywords

References

  1. H. H. MacAdams, and L. Shapiro, 'Circuit simulation of genetic networks,' Science, vol. 269, pp. 650-656, 1995 https://doi.org/10.1126/science.7624793
  2. W. C. Covert, C. H. Schilling, and B. O. Palsson, 'Regulation of gene expression in flux balance models of metabolism,' J. Theor. Biol. vol. 213, pp. 73-88, 2001 https://doi.org/10.1006/jtbi.2001.2405
  3. S. Meyers, and P. Friedland, 'Knowledge-based simulation of genetic regulation in bacteriophage lambda,' Nucleic Acids Res., vol. 12, pp. 1-9, 1984 https://doi.org/10.1093/nar/12.1Part1.1
  4. M. Tomita, K. Hashimoto, K. Takahashi, T. S. Shimizu, Y. Matsuzaki, F. Miyoshi, K. Saito, S. Tanida, K. Yugi, J. C. Venter, and C. A. Hutchison III, 'E-Cell: software environment for whole-cell simulation,' Bioinformatics, vol. 15, pp. 72-84, 1999 https://doi.org/10.1093/bioinformatics/15.1.72
  5. J. C. Liao and M. K. Oh, 'Toward predicting metabolic fluxes in metabolically engineered strains,' Metabolic Engineering., vol. 1, pp. 214-223, 1999 https://doi.org/10.1006/mben.1999.0121
  6. S. Y. Lee and Papoutsakis, Metabolic flux balance analysis, Marcel Deker, New York, U.S.A, pp.13-57, 1999
  7. A. Varma, B. W. Boesch, and B. O. Palsson, 'Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates,' Appl. Environ. Microbiol., vol. 59, pp. 2465-2473, 1993
  8. A. Vanna and B. O. Palsson, 'Stoichiometric flux balance models quantitatively predict growth and metabolic by-product Secretion in wild type Escherichia coli W3110,' Appl. Environ. Microbol., vol. 60, pp.3724-3731, 1994a
  9. A. Varma and B. O. Palsson, 'Metabolic flux balancing: basic concepts, scientific and practical use,' Bio/Technology, vol. 12, pp. 994-998, 1994b https://doi.org/10.1038/nbt1094-994
  10. W. C. Covert and B. O. Palsson, 'Transcriptional regulation in constraints-based metabolic models of Escherichia coli,' J. Biol. Chem., vol. 277, pp.28058-28064, 2002 https://doi.org/10.1074/jbc.M201691200
  11. M. W. Covert, E. M Knight, J. L. Reed, M. J. Herrgard, and B. O. Palsson, 'Integrating high-throughput and computational data elucidates bacterial networks,' Nature, vol. 429, pp.92-96, 2004 https://doi.org/10.1038/nature02456
  12. S. G Lee, 'A study on in silico simulation of various carbon sources-grown Escherichia coli based on a hierarchical regulatory network and flux balance analysis,' Doctoral Thesis, Pusan National University, 2005
  13. S. G Lee, C. M. Kim, and K. S. Hwang, 'Development of a software tool for in silico simulation of Escherichia coli using a visual programming environment,' Journal of Biotechnology, vol. 119, pp. 87-92, 2005 https://doi.org/10.1016/j.jbiotec.2005.04.013
  14. S. G Lee, K. S. Hwang, and C. M. Kim, 'Dynamic behavior of regulatory elements in the hierarchical regulatory network of various carbon sources-grown Escherichia coli,' Journal of Microbiology and Biotechnology, vol. 15, pp. 551-559, 2005
  15. P. H. Winston, Artificial Intelligence, Addison Wesley, U.S.A, pp. 119-137, 1992
  16. C. H. Schilling, J. S. Edwards, Letsecher D., and B. O. Palsson, 'Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems,' Biotechnol. Bioeng., vol. 71, no.4, pp.286-306, 2000 https://doi.org/10.1002/1097-0290(2000)71:4<286::AID-BIT1018>3.0.CO;2-R
  17. P. A. Cotter and R. P. Gunsalus, 'Contribution of the fnr and arcA gene products in coordinate regulation of cytochrome o and d oxide (cyoABCDE and cydAB) gene in Escherichia coli,' FEMS Microbiol Lett, vol. 70, pp.31-36, 1992 https://doi.org/10.1111/j.1574-6968.1992.tb05179.x
  18. A. M. Huerta, H. Salgado, D. Thieffiy, and J. Collado-Vides, 'RegulonDB: A database on transcriptional regulation in Escherichia coli,' Nucleic Acids Res., vol. 26, pp. 55-59, 1998 https://doi.org/10.1093/nar/26.1.55
  19. S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon, 'Network motifis in the transcriptional regulation network of Escherichia coli,' Nature Genetics, vol. 31, pp. 64-68, 2002 https://doi.org/10.1038/ng881
  20. G. N. Stephanopoulos, A. A. Aristidou, and J. Nielsen, Metabolic Engineering: Principles and Methodologies, Academic press, London, UK, pp180-193, 1998
  21. K. B. Andersen and K. V. Meyenburg, 'Are growth rates of Escherichia coli in batch cultures limited by respiration?,' J. Bacteriol, vol. 144, no. 1, pp114-123, 1980
  22. A. Narang, A. Konopka, and D. Ramkrishna, 'New patterns of mixed-substrate utilization during batch growth of escherichia coli K12,' Biotechnol Bioeng., vol. 55, no 5, pp747-757, 1997 https://doi.org/10.1002/(SICI)1097-0290(19970905)55:5<747::AID-BIT5>3.0.CO;2-B
  23. A. Kremling, K. Bettenbrock, B. Laube, J. W. Lengeler, and E. D. Gilles, 'The organization of metabolic reaction networks: Application for diauxic growth on glucose and lactose,' Meta. Eng., vol.3, pp.362-379, 2001 https://doi.org/10.1006/mben.2001.0199
  24. R. Mahadevan, J. S. Edwards, and J. D. Francis, 'Dynamic flux balance analysis of diauxic growth in Escherichia coli,' Biophys. J., vol. 83, pp. 1331-1340, 2002 https://doi.org/10.1016/S0006-3495(02)73903-9
  25. P. Wong, S. Gladney, and J. D. Keasling, 'Mathematical model of the lac operon: Inducer exclusion, catabolite repression, and diauxic growth on glucose and lactose,' Biotechnol. Progr., vol13, pp132-143, 1997 https://doi.org/10.1021/bp970003o