References
- G. M. Hampton and H. F. Frierson, 'Classifying human cancers by gene expression analysis,' Trends Mol. Med., vol. 9, 5-10, 2003 https://doi.org/10.1016/S1471-4914(02)00006-0
- J. Quackenbush, 'Computational analysis of microarray data,' Nat. Rev. Genet., vol. 2, 418, 2001 https://doi.org/10.1038/35076576
- Y. Lu and J. Han, 'Cancer classification using gene expression data,' Information Systems, vol. 28, pp. 243-268, 2003 https://doi.org/10.1016/S0306-4379(02)00072-8
- J. Lyons-Weiler, Patel, S. and S. Bhattacharya, 'A classification-based machine learning approach for the analysis of genomewide expression data,' Genome Res., vol. 13, 503-512, 2003 https://doi.org/10.1101/gr.104003
- S. Ramaswamy and T. R Golub, 'DNA microarrays in clinical oncology,' J. Clin. Onc., vol. 20, 1932-1945, 2002
- T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield and E. S. Lander, 'Molecular classification of cancer: class discovery and class prediction by gene expression monitoring,' Science, vol. 286, pp. 531-537, 1999 https://doi.org/10.1126/science.286.5439.531
- P. Kebriaei, J. Anastasi, & R. A. Larson, Acute lymphoblastic leukaemia: diagnosis and classification. Best Pract Res Clin Haematol., vol. 15, 597-621, 2002 https://doi.org/10.1053/beha.2002.0224
- M. F. Ochs and A. K. Godwin, 'Microarrays in cancer: research and applications,' BioTechniques, vol. 34, S4-S15, 2003
- J. Fridlyand, S. Dudoit and T. P. Speed, 'Comparison of discrimination methods for the classification of tumors using gene expression data,' Journal of the American Statistical Association, vol. 97, pp. 77-87, 2002 https://doi.org/10.1198/016214502753479248
- D. V. Nguyen, and D. M. Rocke, 'Tumor classification by partial least squares using microarray gene expression.,' Bioinformatics, vol. 18(1), 39-50, 2002 https://doi.org/10.1093/bioinformatics/18.1.39
- A. A. Alizadeh, M. B. Eisen, R. E. Davis, C. Ma, S. Losses, A. Rosenwald, J. C. Boldrick, H. Sabet, T. Tran, X. Yu, J. I. Powell, L. Yang, G. E. Marti, T. Moore, J. Hudson Jr., L. Lu, D. B. Lewis, R. Tibshirani, G. Sherlock, W. C. Chan, T. C. Greiner, D. D. Weisenburger, J. O. Armitage, R. Warnke, R. Levy, W. Wilson, M. R. Grever, J. C. Byrd, D. Botstein, P. O. Brown, and L. M. Staudt, 'Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling,' Nature, vol. 403, pp. 503-511, 2000 https://doi.org/10.1038/35000501
- U. Alon, N. Barkai, D. A. Notterman, K. Gish, Y. Barra, D. Mack and A. J. Levine, 'Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays,' Proceedings of National Academy of Science USA, vol. 96, pp. 6745-6750, 1999 https://doi.org/10.1073/pnas.96.12.6745
- S. Bicciato, M. Pandin, G. Didone and C. Di Bello, 'Pattern identification and classification in gene expression data using an auto associative neural network model,' Biotechnol . Bioeng., vol. 18(4), 847-854, 2002 https://doi.org/10.1002/bit.260180607
- J.-H. Cho, D. Lee, J. H. Park, K. Kim and I.-B. Lee, 'Optimal approach for classification of acute leukemia subtypes based on gene expression data,' Biotechnology Progress, vol. 18, pp. 847-854, 2002 https://doi.org/10.1021/bp025517o
- C. K. Yoo, I. Lee, and P. A. Vanrolleghem; 'Interpreting patterns and analysis of acute leukemia gene expression data by multivariate fuzzy statistical analysis,' Comp. & Chem. Eng., vol. 29, 1345-1356, 2005 https://doi.org/10.1016/j.compchemeng.2005.02.031
- J. Donie, H. Gerauer, Y. Wachter and S. J. Zunino, 'Resveratrol induces extensive apoptosis by depolarizing motpchondrial membranes and activating caspase-9 in acute lymphoblastic leukemia cells,' Cancer Res., vol. 61, 4731-4739, 2001
- P. J. Park, L. Tian and I. S. Kohane, 'Linking gene expression data with patient survival times using partial least squares,' Bioinformatics, vol. 18(1), S120-S127, 2002 https://doi.org/10.1093/bioinformatics/18.suppl_1.S120
- T. et al., Ross, 'Systematic variation in gene expression patterns in human cancer cell lines,' Nature Genetics, vol. 24, 227-234, 2000 https://doi.org/10.1038/73432
- U. et al., Scherf, 'A gene expression database for the molecular pharmacology of cancer,' Nat. Genet., vol. 24, 236-244, 2000 https://doi.org/10.1038/73439
- G Stephanopoulos, D. H. Hwang, W. A. Schmit, J. Misra and G Stephanopoulos, 'Mapping physiological states from microarray expression measurements,' Bioinformatics, vol. 18(8), 1054-1063, 2002 https://doi.org/10.1093/bioinformatics/18.8.1054
- J. Stephenson, 'Human genome studies expected to revolutionize cancer classification,' J. Am. Med. Assoc., vol. 282, 927-92, 1999 https://doi.org/10.1001/jama.282.10.927
- R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed., John Wiley & Sons, New York, 2001
- Y. H. Yang, S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngai and T. P. Speed, 'Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation,' Nucleic Acids Research, vol. 30, pp. e15, 2002 https://doi.org/10.1093/nar/30.4.e15
- J. G. Thomas, J. M. Olson, S. J. Tapscott and L. P. Zhao, 'An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles,' Genome Res., vol. 11, 1227-1236, 2001 https://doi.org/10.1101/gr.165101
- E. et al., Yeoh, 'Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling,' Cancer Cell., vol. 1, 133-143, 2002 https://doi.org/10.1016/S1535-6108(02)00032-6