The Analysis of Dose in a Rectum by Multipurpose Brachytherapy Phantom

근접방사선치료용 다목적 팬톰을 이용한 직장 내 선량분석

  • Huh, Hyun-Do (Department of Radiation Oncology, College of Medicine, Inha University) ;
  • Kim, Seong-Hoon (Department of Radiation Oncology, College of Medicine, Hanyang University) ;
  • Cho, Sam-Ju (Department of Medical Physics, Kyonggi University) ;
  • Lee, Suk (Department of Radiation Oncology College of Medicine, Korea University) ;
  • Shin, Dong-Oh (Department of Radiation Oncology, College of Medicine, KyungHee University) ;
  • Kwon, Soo-Il (Department of Medical Physics, Kyonggi University) ;
  • Kim, Hun-Jung (Department of Radiation Oncology, College of Medicine, Inha University) ;
  • Kim, Woo-Chul (Department of Radiation Oncology, College of Medicine, Inha University) ;
  • K. Loh John-J. (Department of Radiation Oncology, College of Medicine, Inha University)
  • 허현도 (인하대학교 의과대학 방사선종양학교실) ;
  • 김성훈 (한양대학교 의과대학 방사선종양학교실) ;
  • 조삼주 (경기대학교대학원 의학물리학과) ;
  • 이석 (고려대학교 의과대학 방사선종양학교실) ;
  • 신동오 (경희대학교 의과대학 방사선종양학교실) ;
  • 권수일 (경기대학교대학원 의학물리학과) ;
  • 김헌정 (인하대학교 의과대학 방사선종양학교실) ;
  • 김우철 (인하대학교 의과대학 방사선종양학교실) ;
  • 노준규 (인하대학교 의과대학 방사선종양학교실)
  • Published : 2005.12.30

Abstract

Purpose: In this work we designed and made MPBP(Multi Purpose Brachytherapy Phantom). The MPBP enables one to reproduce the same patient set-up in MPBP as the treatment of the patient and we tried to get an exact analysis of rectal doses in the phantom without need of in-vivo dosimetry. Materials and Methods: Dose measurements were tried at a point of rectum 1, the reference point of rectum, with a diode detector for 4 patients treated with tandem and ovoid for a brachytherapy of a cervix cancer. Total 20 times of rectal dose measurements were made with 5 times a patient. The set-up variation of the diode detector was analyzed. The same patient set-ups were reproduced in self-made MPBP and then rectal doses were measured with TLD. Results: The measurement results of the diode detector showed that the set-up variation of the diode detector was the maximum $11.25{\pm}0.95mm$ in the y-direction for Patient 1 and the maximum $9.90{\pm}4.50mm,\;20.85{\pm}4.50mm,\;and\;19.15{\pm}3.33mm$ in the z-direction for Patient 2, 3, and 4, respectively. Un analyzing the degree of variation in 3 directions the more variation was showed in the z-direction than x- and y-direction except Patient 1. The results of TLD measurements in MPBP showed the relative maximum error of 8.6% and 7.7% at a point of rectum 1 for Patient 1 and 4, respectively and 1.7% and 1.2% for Patient 2 and 3, respectively. The doses measured at R1 and R2 were higher than those calculated except R point of Patient 2. this can be thought to related to the algorithm of dose calculation, whcih corrects for air and water but is guessed not to consider the correction for the scattered rays, but by considering the self-error (${\pm}5%$) TLD has the relative error of values measured and calculated was analyzed to be in a good agreement within 15%. Conclusion: The reproducibility of dose measurements under the same condition as the treatment could be achieved owing to the self-made MPMP and the dose at the point of interest could be analyzed accurately. If a treatment is peformed after achieving dose optimization using the data obtained in the phantom, dose will be able to be minimized to important organs.

목적: 근접방사선 치료시 직장내 선량측정은 치료간(Inter-fraction) 직장의 형태가 변화하므로 측정의 재현성을 이룰 수 없다. 본 연구에서는 근접방사선치료용 다목적 팬톰(Multi Purpose Brachytherapy Phantom, MPBP)을 제작하여 치료 시와 동일한 조건을 재현하였고 이때 측정한 선량 값을 직장의 부작용을 줄이기 위해 선량최적화에 적용하고자 하였다. 대상 및 방법: 자궁경부암 근접방사선 치료 시 탄뎀(tandem)과 난형체(ovoid)를 사용한 환자 4명을 대상으로 다이오드 검출기를 이용하여 직장표시 기준점 R1에서 선량측정을 시행하였다. 환자 당 5회씩 총 20회 직장선량을 측정하였다. 그리고 반복 측정 시 다이오드 검출기의 설정 변화(set up variation)를 분석하였다. 그리고 자체 제작된 근접방사선치료용 다목적 팬톰에서 MFA (Multi Function Applicator)를 이용하여 치료 시와 동일한 조건을 재현한 후 열형광선량계(TLD)를 이용하여 직장 표시 기준점 좌표 위치에서 선량을 측정하였다. 결과: 직장 내 다이오드 검출기의 측정 결과 설정 변화는 환자 1의 경우에 Y방향에서 최고 $11.25{\pm}0.95mm$보였고, 환자 2와 3은 Z 방향에서 각각 $9.90{\pm}4.50mm$$20.85{\pm}4.50mm$를 나타냈다. 그리고 환자 4는 Z 방향에서 $19.15{\pm}3.33mm$의 변화를 나타내었다. 또한 다이오드 검출기 위치에 따른 평균선량 값은 $122.82{\pm}7.96cGy{\sim}323.78{\pm}11.16cGy$로 나타났다. MPBP에서 TLD의 측정 결과는 직장 표시 기준점(R1)에서 환자1과 4는 상대오차가 각각 최고 8.6%와 7.7%를 보였고, 환자2와 3은 각각 1.7%와 1.2%의 오차를 보였다. 그리고 R과 R2에서 측정한 선량 값들은 환자 2의 R 지점을 제외하고 계산값과 비교하여 $1.7{\sim}8.6%$ 높은 값을 나타냈다. 그리고 반복측정으로 인한 위치변화와 그에 따른 선량 값의 변화는 분석하지 않았다. 계산 값과 측정값의 상대오차가 미국의학물리학회 보고서에서 권고한 15% 내에서 잘 일치하는 것으로 분석되었다. 결론: 자체 제작된 근접치료용 다목적 팬톰(MPBP)은 치료 시와 동일한 조건에서 선량측정의 재현성을 이룰 수 있었고, 직장의 기준점에서 선량을 정확히 분석할 수 있었다. 또한 팬톰에서 측정한 데이터를 이용하여 직장의 부작용을 줄이기 위해 치료 전 선량 최적화를 이루는데 충분한 자료로 활용할 수 있다고 판단되었다.

Keywords

References

  1. Crook JM, Esche BA, Chaplain G, Iose I, Sentenac I, Horiot JC. Dose-Volume analysis and the prevention of radiation sequelae in cervical cancer. Radiother Oncol 1987;8: 321-332 https://doi.org/10.1016/S0167-8140(87)80182-2
  2. Roeske JC, Mundt AJ, Halpern H, et al. Late rectal sequlae following definitive radiation therapy for carcinoma of the uterine cervix: a dosimetric analysis. Int J Radiat Oncol Biol phys 1997;37:351-358 https://doi.org/10.1016/S0360-3016(96)00490-7
  3. Clark BG, Souhami L, Roman TN, Evans MDC, Pla C. Rectal complications in patients with carcinoma of the cervix treated with concomitant cisplatin and external beam irradiation with high dose rate brachytherapy: a dosimetric analysis. Int J Radit Oncol Biol Phys 1994;28:1243-1250 https://doi.org/10.1016/0360-3016(94)90501-0
  4. Shin KH, Huh SJ, Chie EK, et al. Analysis of correlation between rectal complications and rectal dose following high dose rate intracavitary radiotherapy in patients with uterine cervix cancer: In vivo Dosimetric Analysis. Radiation Medicine 1999;17: 289-293
  5. Eng TY, Fuller CD, Cavanaugh SX, Blough MM, Sadeghi A, Herman T. Significant rectal and bladder dose reduction via utilization of foley balloon catheters in high-dose-rate tandem and ovoid intracavitary brachytherapy of the uterine cervix. Int J Radiat Oncol Biol Phys 2004;59:174-178 https://doi.org/10.1016/j.ijrobp.2003.09.090
  6. Saarnak AE, Boersma M, Bunningen BNFM, Wolterink R, Steggerda MJ. Inter-observer variation in delineation of bladder and rectum contours for brachytherapy of cervical cancer. Radiother Oncol 2000;56:37-38 https://doi.org/10.1016/S0167-8140(00)00185-7
  7. Hellebust TP, Dale E, Skjonsberg A, Olsen DR. Inter fraction variations in rectum and bladder volumes and dose distributions during high dose rate brachytherapy treatment of the uterine cervix investigated by repetitive CT-examinations. Radiother Oncol 2001;60:273-280 https://doi.org/10.1016/S0167-8140(01)00386-3
  8. elloski CE, Palmer M, Chronowski GM, Jhingran A, Horton J, Eifel PJ. Comparison between CT-based volumetric calculations and ICRU reference-point estimates of radiation dose delivered to bladder and rectum during intracavitary radiotherapy for cervical cancer. Int J Radiat Oncol Biol Phys 2005;62:131-137 https://doi.org/10.1016/j.ijrobp.2004.09.059
  9. Gerstner NW, Wacher S, Reinstadler E, et al. Bladder and rectum dose defined from MRI base treatment planning for cervix cancer brachytherapy: comparison of dose-volume histograms for organ contours and organ wall, comparison with ICRU rectum and bladder reference point. Radiother Oncol 2003;68:269-276 https://doi.org/10.1016/S0167-8140(03)00189-0
  10. Cunningham DE, Stryker JA, Velkley DE, Chung CK. Routine clinical estimation of rectal, rectosigmoidal, and bladder dose from intracavitary brachytherapy in the treatment of carcinoma of the cervix. Int J Radiat Oncol Biol Phys 1981; 7:653-660 https://doi.org/10.1016/0360-3016(81)90381-3
  11. Kessaris N, Nori D. Rectal thermoluminescent dosimeter measurements using the microSelectron high dose rate afterloader in postoperative intravaginal radiation case. Int J Radiat Oncol Biol Phys 1992;26:341-345 https://doi.org/10.1016/0360-3016(93)90215-H
  12. Alecu R, Alecu M. In-vivo rectal dose measurements with diodes to avoid misadministrations during intracavitary high dose rate brachytherapy for carcinoma of the cervix. Med phys 1999; 26:768-770 https://doi.org/10.1118/1.598598
  13. Chung EJ, Lee SH. Comparison between the calculated and measured dose in the rectum during high dose rate brachytherapy for uterine cervical carcinomas. J Korean Soc ther Radiol 2002;20:396-404
  14. Joslin CA, Flynn A, Hall EJ. Computers in brachytherapy dosimetry. In:Arnold, Principles and Practice of Brachytherapy. 1st ed. New York, Oxford University press Inc. 2001:49-52
  15. AAPM. Task Group 40: Comprehensive QA for radiation oncology. Med phys 1994;21:581-618 https://doi.org/10.1118/1.597316
  16. Ogino I, Kitamura T, Okamto N, et al. Late rectal complication following high dose rate intracavitary brachytherapy in cancer of the cervix. Int J Radiat Oncol Biol Phys 1995;32: 725-734 https://doi.org/10.1016/0360-3016(94)00547-8
  17. ICRU Report 38: Dose and volume specification for reporting intracavitary therapy in gynecology. International Commission on Radiation Units and Measurements, Bethesda. MD 1985
  18. Scalchi P, Francescon P. Calibration of a MOSFET detection system for 6-MV In vivo dosimetry. Int J Radiat Oncol Biol Phys 1998;40:987-993 https://doi.org/10.1016/S0360-3016(97)00894-8
  19. Sanini AS, Zhu TC. Temperature dependence of commercially available diode detectors. Med Phys 2002;29:622-630 https://doi.org/10.1118/1.1461842
  20. Pai S, Reinstein LE, Gluckman G, Xu Z, Weiss T. The use of improved radiochromic film for in vivo quality assurance of high dose rate brachytherapy. Med phys 1998;25:1217-1221 https://doi.org/10.1118/1.598311
  21. Waldhaausl C, Wambersie A, Potter R, Georg D. In-vivo dosimetry for gynecological brachytherapy: physical and clinical considerations. Radiother Oncol 2005;(in press):1-8